Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Langmuir ; 31(12): 3563-8, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25314133

RESUMO

Programmable positioning of 2 µm polystyrene (PS) beads with single particle precision and location selective, "on-demand", particle deposition was demonstrated by utilizing patterned electrodes and electrophoretic deposition (EPD). An electrode with differently sized hole patterns, from 0.5 to 5 µm, was used to illustrate the discriminatory particle deposition events based on the voltage and particle-to-hole size ratio. With decreasing patterned hole size, a larger electric field was required for a particle deposition event to occur in that hole. For the 5 µm hole, particle deposition began to occur at 10 V/cm where as an electric field of 15 V/cm was required for particles to begin depositing in the 2 µm holes. The likelihood of particle depositions continued to increase for smaller sized holes as the electric field increased. Eventually, a monolayer of particles began to form at approximately 20 V/cm. In essence, a voltage threshold was found for each hole pattern of different sizes, allowing fine adjustments in pattern hole size and voltage to control when a particle deposition event took place, even with the patterns on the same electrode. This phenomenon opens a route toward controlled, multimaterial deposition and assembly onto substrates without repatterning of the electrode or complicated surface modification of the particles. An analytical approach using the theories for electrophoresis and dielectrophoresis found the former to be the dominating force for depositing a particle into a patterned hole. Ebeam lithography was used to pattern spherical holes in precise configurations onto electrode surfaces, where each hole accompanied a polystyrene (PS) particle placement and attachment during EPD. The versatility of e-beam lithography was utilized to create arbitrary pattern configurations to fabricate particle assemblies of limitless configurations, enabling fabrication of unique materials assemblies and interfaces.

3.
Nano Lett ; 10(8): 2832-7, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20698595

RESUMO

We investigate tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides. Resonances are observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors over 10(3) are possible due to plasmon focusing in the interwire space.

4.
Ann Work Expo Health ; 65(8): 979-987, 2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33999132

RESUMO

Reuse of filtering facepiece respirators (FFRs, commonly referred to as N95s) normally meant for single use has become common in healthcare facilities due to shortages caused by the COVID-19 pandemic. Here, we report that murine hepatitis coronavirus initially seeded on FFR filter material is inactivated (6 order of magnitude reduction as measured by median tissue culture infective dose, TCID50) after dry heating at 75°C for 30 min. We also find that the quantitative fit of FFRs after heat treatment at this temperature, under dry conditions or at 90% relative humidity, is not affected by single or 10 heating cycles. Previous studies have reported that the filtration efficiency of FFRs is not negatively impacted by these heating conditions. These results suggest that thermal inactivation of coronaviruses is a potentially rapid and widely deployable method to reuse N95 FFRs in emergency situations where reusing FFRs is a necessity and broad-spectrum sterilization is unavailable. However, we also observe that a radiative heat source (e.g. an exposed heating element) results in rapid qualitative degradation of the FFR. Finally, we discuss differences in the results reported here and other recent studies investigating heat as a means to recycle FFRs. These differences suggest that while our repeated decontamination cycles do not affect FFR fit, overall wear time and the number of donning/doffing cycles are important factors that likely degrade FFR fit and must be investigated further.


Assuntos
COVID-19 , Exposição Ocupacional , Animais , Temperatura Alta , Humanos , Camundongos , Respiradores N95 , Pandemias , SARS-CoV-2
5.
Nanotechnology ; 21(39): 395701, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20808033

RESUMO

Surface enhanced Raman spectroscopy (SERS) has been increasingly utilized as an analytical technique with significant chemical and biological applications (Qian et al 2008 Nat. Biotechnol. 26 83; Fujita et al 2009 J. Biomed. Opt. 14 024038; Chou et al 2008 Nano Lett.8 1729; Culha et al 2003 Anal. Chem. 75 6196; Willets K A 2009 Anal. Bioanal. Chem. 394 85; Han et al 2009 Anal. Bioanal. Chem. 394 1719; Sha et al 2008 J. Am. Chem. Soc. 130 17214). However, production of a robust, homogeneous and large-area SERS substrate with the same ultrahigh sensitivity and reproducibility still remains an important issue. Here, we describe a large-area ultrahigh-uniformity tapered silver nanopillar array made by laser interference lithography on the entire surface of a 6 inch wafer. Also presented is the rigorous optical characterization method of the tapered nanopillar substrate to accurately quantify the Raman enhancement factor, uniformity and repeatability. An average homogeneous enhancement factor of close to 10(8) was obtained for benzenethiol adsorbed on a silver-coated nanopillar substrate.


Assuntos
Nanoestruturas/química , Dióxido de Silício/química , Prata/química , Análise Espectral Raman/métodos , Nanoestruturas/ultraestrutura , Fenóis , Reprodutibilidade dos Testes , Compostos de Sulfidrila , Propriedades de Superfície
6.
Opt Express ; 17(1): 329-36, 2009 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-19129901

RESUMO

Integrated surface plasmon resonance biosensors promise to enable compact and portable biosensing at high sensitivities. To replace the far field detector traditionally used to detect surface plasmons we integrate a near field detector below a functionalized gold film. The evanescent field of a surface plasmon at the aqueous-gold interface is converted into photocurrent by a thin film organic heterojunction diode. We demonstrate that use of the near field detector is equivalent to the traditional far field measurement of reflectivity. The sensor is stable and reversible in an aqueous environment for periods of 6 hrs. For specific binding of neutravidin, the detection limit is 4 microg/cm(2). The sensitivity can be improved by reducing surface roughness of the gold layers and optimization of the device design. From simulations, we predict a maximum sensitivity that is two times lower than a comparable conventional SPR biosensor.


Assuntos
Técnicas Biossensoriais/métodos , Ouro , Ressonância de Plasmônio de Superfície/métodos , Técnicas Biossensoriais/instrumentação , Estabilidade de Medicamentos , Desenho de Equipamento/instrumentação , Luz , Microeletrodos , Compostos Orgânicos , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície/instrumentação , Água
7.
J Vis Exp ; (105)2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26651055

RESUMO

A major advantage of microfluidic devices is the ability to manipulate small sample volumes, thus reducing reagent waste and preserving precious sample. However, to achieve robust sample manipulation it is necessary to address device integration with the macroscale environment. To realize repeatable, sensitive particle separation with microfluidic devices, this protocol presents a complete automated and integrated microfluidic platform that enables precise processing of 0.15-1.5 ml samples using microfluidic devices. Important aspects of this system include modular device layout and robust fixtures resulting in reliable and flexible world to chip connections, and fully-automated fluid handling which accomplishes closed-loop sample collection, system cleaning and priming steps to ensure repeatable operation. Different microfluidic devices can be used interchangeably with this architecture. Here we incorporate an acoustofluidic device, detail its characterization, performance optimization, and demonstrate its use for size-separation of biological samples. By using real-time feedback during separation experiments, sample collection is optimized to conserve and concentrate sample. Although requiring the integration of multiple pieces of equipment, advantages of this architecture include the ability to process unknown samples with no additional system optimization, ease of device replacement, and precise, robust sample processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA