Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607942

RESUMO

Type 1 diabetes (T1D) results from immune infiltration and destruction of insulin-producing ß cells within the pancreatic islets of Langerhans (insulitis). Early diagnosis during presymptomatic T1D would allow for therapeutic intervention prior to substantial ß-cell loss at onset. There are limited methods to track the progression of insulitis and ß-cell mass decline. During insulitis, the islet microvasculature increases permeability, such that submicron-sized particles can extravasate and accumulate within the islet microenvironment. Ultrasound is a widely deployable and cost-effective clinical imaging modality. However, conventional microbubble contrast agents are restricted to the vasculature. Submicron nanodroplet (ND) phase-change agents can be vaporized into micron-sized bubbles, serving as a microbubble precursor. We tested whether NDs extravasate into the immune-infiltrated islet microenvironment. We performed ultrasound contrast-imaging following ND infusion in nonobese diabetic (NOD) mice and NOD;Rag1ko controls and tracked diabetes development. We measured the biodistribution of fluorescently labeled NDs, with histological analysis of insulitis. Ultrasound contrast signal was elevated in the pancreas of 10-wk-old NOD mice following ND infusion and vaporization but was absent in both the noninfiltrated kidney of NOD mice and the pancreas of Rag1ko controls. High-contrast elevation also correlated with rapid diabetes onset. Elevated contrast was also observed as early as 4 wk, prior to mouse insulin autoantibody detection. In the pancreata of NOD mice, infiltrated islets and nearby exocrine tissue were selectively labeled with fluorescent NDs. Thus, contrast ultrasound imaging with ND phase-change agents can detect insulitis prior to diabetes onset. This will be important for monitoring disease progression, to guide and assess preventative therapeutic interventions for T1D.


Assuntos
Meios de Contraste/química , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/patologia , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/irrigação sanguínea , Ultrassonografia/métodos , Animais , Autoanticorpos/análise , Diagnóstico Precoce , Feminino , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Microbolhas
2.
Langmuir ; 39(1): 168-176, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36524827

RESUMO

Vaporizable endoskeletal droplets are solid hydrocarbons in liquid fluorocarbon droplets in which melting of the hydrocarbon phase leads to the vaporization of the fluorocarbon phase. In prior work, vaporization of the endoskeletal droplets was achieved thermally by heating the surrounding aqueous medium. In this work, we introduce a near-infrared (NIR) optically absorbing naphthalocyanine dye (zinc 2,11,20,29-tetra-tert-butyl-2,3-naphthalocynanine) into the solid hydrocarbon (eicosane, n-C20H42) core of liquid fluorocarbon (C5F12) drops suspended in an aqueous medium. Droplets with a uniform diameter of 11.7 ± 0.7 µm were formed using a flow-focusing microfluidic device. The solid hydrocarbon formed a crumpled spherical structure within the liquid fluorocarbon droplet. The photoactivation behavior of these dye-containing endoskeletal droplets was investigated using NIR laser irradiation. When exposed to a pulsed laser of 720 nm wavelength, the dye-containing droplets vaporized at an average laser fluence of 65 mJ/cm2, whereas blank droplets without the dye did not vaporize at any fluence up to 100 mJ/cm2. Furthermore, dye-loaded droplets with a smaller, polydisperse size distribution were prepared using a simple shaking method and studied in a flow phantom for their photoacoustic signal and ultrasound contrast imaging. These results demonstrate that dye-containing endoskeletal droplets can be made to vaporize by externally applied optical energy. Such droplets may be useful for a variety of photoacoustic applications for sensing, imaging, and therapy.


Assuntos
Fluorocarbonos , Compostos Orgânicos , Volatilização , Ultrassonografia , Fluorocarbonos/química
3.
Bioconjug Chem ; 33(6): 1106-1113, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35476906

RESUMO

Microbubbles (1-10 µm diameter) have been used as conventional ultrasound contrast agents (UCAs) for applications in contrast-enhanced ultrasound (CEUS) imaging. Nanobubbles (<1 µm diameter) have recently been proposed as potential extravascular UCAs that can extravasate from the leaky vasculature of tumors or sites of inflammation. However, the echogenicity of nanobubbles for CEUS remains controversial owing to prior studies that have shown very low ultrasound backscatter. We hypothesize that microbubble contamination in nanobubble formulations may explain the discrepancy. To test our hypothesis, we examined the size distributions of lipid-coated nanobubble and microbubble suspensions using multiple sizing techniques, examined their echogenicity in an agar phantom with fundamental-mode CEUS at 7 MHz and 330 kPa peak negative pressure, and interpreted our results with simulations of the modified Rayleigh-Plesset model. We found that nanobubble formulations contained a small contamination of microbubbles. Once the contribution from these microbubbles is removed from the acoustic backscatter, the acoustic contrast of the nanobubbles was shown to be near noise levels. This result indicates that nanobubbles have limited utility as UCAs for CEUS.


Assuntos
Microbolhas , Neoplasias , Acústica , Meios de Contraste , Humanos , Ultrassonografia/métodos
4.
Langmuir ; 38(8): 2634-2641, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35175053

RESUMO

Vaporizable hydrocarbon-in-fluorocarbon endoskeletal droplets are a unique category of phase-change emulsions with interesting physical and thermodynamic features. Here, we show microfluidic fabrication of various morphologies, such as solid-in-liquid, liquid-in-solid, and Janus-type, of complex solid n-C20H42 or n-C21H44 and liquid n-C5F12 droplets. Furthermore, we investigated the vaporization behavior of these endoskeletal droplets, focusing on the effects of heat treatment and core size. Comparison of vaporization and differential scanning calorimetry results indicated that vaporization occurs prior to melting of the bulk hydrocarbon phase for C20H42/C5F10 droplets and near the rotator phase for C21H44/C5F10 droplets. We found that heat treatment of the droplets increased the fraction of droplets that vaporized and also increased the vaporization temperature of the droplets, although the effect was temporary. Furthermore, we found that changing the relative size of the solid hydrocarbon core compared to the surrounding liquid shell increased the vaporization temperature and the vaporizing fraction. Taken together, these data support the hypothesis that surface melting behavior exhibited by the linear alkane may trigger the fluorocarbon vaporization event. These results may aid in the understanding of the interfacial thermodynamics and transport and the engineering of novel vaporizable endoskeletal droplets for biomedical imaging and other applications.


Assuntos
Fluorocarbonos , Emulsões , Fluorocarbonos/química , Hidrocarbonetos , Temperatura , Volatilização
5.
Langmuir ; 37(7): 2386-2396, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33566623

RESUMO

Nanodrops comprising a perfluorocarbon liquid core can be acoustically vaporized into echogenic microbubbles for ultrasound imaging. Packaging the microbubble in its condensed liquid state provides some advantages, including in situ activation of the acoustic signal, longer circulation persistence, and the advent of expanded diagnostic and therapeutic applications in pathologies which exhibit compromised vasculature. One obstacle to clinical translation is the inability of the limited surfactant present on the nanodrop to encapsulate the greatly expanded microbubble interface, resulting in ephemeral microbubbles with limited utility. In this study, we examine a biomimetic approach to stabilize an expanding gas surface by employing the lung surfactant replacement, beractant. Lung surfactant contains a suite of lipids and proteins that provide efficient shuttling of material from bilayer folds to the monolayer surface. We hypothesized that beractant would improve stability of acoustically vaporized microbubbles. To test this hypothesis, we characterized beractant surface dilation mechanics and revealed a novel biophysical phenomenon of rapid interfacial melting, spreading, and resolidification. We then harnessed this unique functionality to increase the stability and echogenicity of microbubbles produced after acoustic droplet vaporization for in vivo ultrasound imaging. Such biomimetic lung surfactant-stabilized nanodrops may be useful for applications in ultrasound imaging and therapy.


Assuntos
Biomimética , Meios de Contraste , Pulmão , Microbolhas , Tensoativos , Ultrassonografia
6.
Artigo em Inglês | MEDLINE | ID: mdl-33100885

RESUMO

Acoustic nanodrops are designed to vaporize into ultrasound-responsive microbubbles, which presents certain challenges nonexistent for conventional nano-emulsions. The requirements of biocompatibility, vaporizability and colloidal stability has focused research on perfluorocarbons (PFCs). Shorter PFCs yield better vaporizability via their lower critical temperature, but they also dissolve more easily owing to their higher vapor pressure and solubility. Thus, acoustic nanodrops have required a tradeoff between vaporizability and colloidal stability in vivo. The recent advent of vaporizable endoskeletal droplets, which are both stable and vaporizable, may have solved this problem. The purpose of this review is to justify this premise by pointing out the beneficial properties of acoustic nanodrops, providing an analysis of vaporization and dissolution mechanisms, and reviewing current biomedical applications.

7.
Langmuir ; 36(11): 2954-2965, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32090572

RESUMO

Phase-change perfluorocarbon microdroplets were introduced over 2 decades ago to occlude downstream vessels in vivo. Interest in perfluorocarbon nanodroplets has recently increased to enable extravascular targeting, to rescue the weak ultrasound signal of perfluorocarbon droplets by converting them to microbubbles and to improve ultrasound-based therapy. Despite great scientific interest and advances, applications of phase-change perfluorocarbon agents have not reached clinical testing because of efficacy and safety concerns, some of which remain unexplained. Here, we report that the coexistence of perfluorocarbon droplets and microbubbles in blood, which is inevitable when droplets spontaneously or intentionally vaporize to form microbubbles, is a major contributor to the observed side effects. We develop the theory to explain why the coexistence of droplets and microbubbles results in microbubble inflation induced by perfluorocarbon transfer from droplets to adjacent microbubbles. We also present the experimental data showing up to 6 orders of magnitude microbubble volume expansion, which occludes a 200 µm tubing in the presence of perfluorocarbon nanodroplets. More importantly, we demonstrate that the rate of microbubble inflation and ultimate size can be controlled by manipulating formulation parameters to tailor the agent's design for the potential theranostic application while minimizing the risk to benefit ratio.


Assuntos
Meios de Contraste/química , Fluorocarbonos/química , Microbolhas , Nanopartículas/química , Animais , Feminino , Camundongos Nus , Peso Molecular , Tamanho da Partícula , Ultrassonografia/métodos , Volatilização
8.
J Surg Res ; 246: 450-456, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31629496

RESUMO

Acute respiratory distress syndrome (ARDS) is a serious respiratory condition that occurs in approximately 10% of patients entering intensive care units around the world, affecting nearly 190,000 patients annually in the United States. Owing to the severity of the condition, conventional methods of oxygenation are often insufficient. However, current alternate methods of oxygenation are associated with contraindications and a mortality rate near 50%. Therefore, a need exists for a safer and more effective method of oxygenation for patients with ARDS. In this work, the feasibility of using intraperitoneal perfusions of oxygen microbubbles-peritoneal microbubble oxygenation (PMO)-to treat lipopolysaccharide-induced ARDS was explored with the objective of showing restoration of normoxic conditions after a single bolus infusion of oxygen microbubbles. Male Wistar rats induced with ARDS via lipopolysaccharide inhalation were treated with PMO at 12-h intervals over a period of 48 h. Their physiological responses were monitored throughout the study, after which necropsy was performed. Response data were then compared with saline control and untreated groups. We conclude that rats experiencing moderate to severe ARDS that were treated with PMO experienced a survival rate 37% higher than animals not given treatment and exhibited increased peripheral blood oxygen saturation when compared with untreated and saline-treated groups. Moreover, those treated with PMO experienced a lower lung wet/dry ratio and less severe lung pathology, indicating a surprising improvement in lung health. Overall, this study demonstrates the ability of PMO to deliver life-sustaining supplemental oxygen to rats suffering from ARDS and warrants further work toward clinical translation.


Assuntos
Microbolhas , Oxigênio/administração & dosagem , Perfusão/métodos , Síndrome do Desconforto Respiratório/terapia , Terapia Respiratória/métodos , Animais , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos/toxicidade , Masculino , Ratos , Ratos Wistar , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/diagnóstico , Índice de Gravidade de Doença , Resultado do Tratamento
9.
J Acoust Soc Am ; 147(5): 3236, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32486824

RESUMO

Microbubble translations driven by ultrasound-induced radiation forces can be beneficial for applications in ultrasound molecular imaging and drug delivery. Here, the effect of size range in microbubble populations on their translations is investigated experimentally and theoretically. The displacements within five distinct size-isolated microbubble populations are driven by a standard ultrasound-imaging probe at frequencies ranging from 3 to 7 MHz, and measured using the multi-gate spectral Doppler approach. Peak microbubble displacements, reaching up to 10 µm per pulse, are found to describe transient phenomena from the resonant proportion of each bubble population. The overall trend of the statistical behavior of the bubble displacements, quantified by the total number of identified displacements, reveals significant differences between the bubble populations as a function of the transmission frequency. A good agreement is found between the experiments and theory that includes a model parameter fit, which is further supported by separate measurements of individual microbubbles to characterize the viscoelasticity of their stabilizing lipid shell. These findings may help to tune the microbubble size distribution and ultrasound transmission parameters to optimize the radiation-force translations. They also demonstrate a simple technique to characterize the microbubble shell viscosity, the fitted model parameter, from freely floating microbubble populations using a standard ultrasound-imaging probe.


Assuntos
Meios de Contraste , Microbolhas , Ondas Ultrassônicas , Ultrassonografia , Viscosidade
10.
Langmuir ; 35(31): 10042-10051, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30543753

RESUMO

Lipid-coated microbubbles are currently used clinically as ultrasound contrast agents for echocardiography and radiology and are being developed for many new diagnostic and therapeutic applications. Accordingly, there is a growing need to engineer specific formulations by employing rational design to guide lipid selection and processing. This approach requires a quantitative relationship between lipid chemistry and interfacial properties of the microbubble shell. Just such a model is proposed here on the basis of lateral Coulomb and van der Waals interactions between lipid head- and tailgroups, using previous coarse graining and force fields developed for molecular dynamics simulations. The model predicts with sufficient accuracy the monolayer permeability, the elasticity as a function of either lipid composition or temperature, and the equilibrium spreading surface tension of the lipid onto an air/water interface. In the future, the intermolecular forces model could be employed to elucidate more complex phenomena and to engineer novel microbubble formulations.


Assuntos
Microbolhas , Fosfatidilcolinas/química , Eletricidade Estática , Modelos Químicos , Temperatura , Termodinâmica
11.
Bioconjug Chem ; 29(5): 1534-1543, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29614859

RESUMO

Interest in the use of targeted microbubbles for ultrasound molecular imaging (USMI) has been growing in recent years as a safe and efficacious means of diagnosing tumor angiogenesis and assessing response to therapy. Of particular interest are cloaked microbubbles, which improve specificity by concealing the ligand from blood components until they reach the target vasculature, where the ligand can be transiently revealed for firm receptor-binding by ultrasound acoustic radiation force pulses. Herein, a bio-orthogonal "click" conjugation chemistry is introduced to decorate the surface of cloaked 4-5-µm-diameter microbubbles as part of a sterile and reproducible production process. Azido-functionalized antagonists for the angiogenic biomarkers αVß3 integrin (cRGD) and VEGFR2 (A7R) proteins were conjugated to bimodal-brush microbubbles via strain-promoted [3 + 2] azide-alkyne cycloaddition (SPAAC) click chemistry. Ligand conjugation was validated by epifluorescent microscopy, flow cytometry, and Fourier-transform infrared spectroscopy. Sterility was validated by bacterial culture and endotoxin analysis. Additionally, clinically normal dogs receiving escalating microbubble doses were shown to experience no pathologic changes in physical examination, complete blood count, serum biochemistry profile, or coagulation panel. This bio-orthogonal microbubble conjugation process for cloaked peptide ligands may be leveraged for future USMI studies of tumor angiogenesis for translation to preclinical and clinical applications.


Assuntos
Química Click/métodos , Meios de Contraste/química , Microbolhas , Oligopeptídeos/química , Peptídeos Cíclicos/química , Alcinos/síntese química , Alcinos/química , Animais , Azidas/síntese química , Azidas/química , Meios de Contraste/síntese química , Reação de Cicloadição/métodos , Cães , Humanos , Integrina alfaVbeta3/análise , Ligantes , Modelos Moleculares , Neovascularização Patológica/diagnóstico por imagem , Oligopeptídeos/síntese química , Peptídeos Cíclicos/síntese química , Ultrassonografia/métodos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/análise
12.
Langmuir ; 33(47): 13699-13707, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29064252

RESUMO

The microbubble offers a unique platform to study lung surfactant mechanics at physiologically relevant geometry and length scale. In this study, we compared the response of microbubbles (∼15 µm initial radius) coated with pure dipalmitoyl-phosphatidylcholine (DPPC) versus naturally derived lung surfactant (SURVANTA) when subjected to linearly increasing hydrostatic pressure at different rates (0.5-2.3 kPa/s) at room temperature. The microbubbles contained perfluorobutane gas and were submerged in buffered saline saturated with perfluorobutane at atmospheric pressure. Bright-field microscopy showed that DPPC microbubbles compressed spherically and smoothly, whereas SURVANTA microbubbles exhibited wrinkling and smoothing cycles associated with buckling and collapse. Seismograph analysis showed that the SURVANTA collapse amplitude was constant, but the collapse rate increased with the pressurization rate. An analysis of the pressure-volume curves indicated that the dilatational elasticity increased during compression for both shell types. The initial dilatational elasticity for SURVANTA was nearly twice that of DPPC at higher pressurization rates (>1.5 kPa/s), producing a pressure drop of up to 60 kPa across the film prior to condensation of the perfluorobutane core. The strain-rate dependent stiffening of SURVANTA shells likely arises from their composition and microstructure, which provide enhanced in-plane monolayer rigidity and lateral repulsion from surface-associated collapse structures. Overall, these results provide new insights into lung surfactant mechanics and collapse behavior during compression.


Assuntos
Microbolhas , Elasticidade , Pressão , Surfactantes Pulmonares , Tensoativos
13.
Langmuir ; 32(16): 3937-44, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27006083

RESUMO

Monodisperse microbubble ultrasound contrast agents may dramatically increase the sensitivity and efficiency in ultrasound imaging and therapy. They can be produced directly in a microfluidic flow-focusing device, but questions remain as to the interfacial chemistry, such as the formation and development of the phospholipid monolayer coating over time. Here, we demonstrate the synthesis of monodisperse bubbles with radii of 2-10 µm at production rates ranging from 10(4) to 10(6) bubbles/s. All bubbles were found to dissolve to a stable final radius 2.55 times smaller than their initial radius, independent of the nozzle size and shear rate, indicating that the monolayer self-assembles prior to leaving the nozzle. The corresponding decrease in surface area by a factor 6.6 reveals that lipid molecules are adsorbed to the gas-liquid interface in the disordered expanded state, and they become mechanically compressed by Laplace pressure-driven bubble dissolution to a more ordered condensed state with near zero surface tension. Acoustic characterization of the stabilized microbubbles revealed that their shell stiffness gradually increased from 0.8 to 2.5 N/m with increasing number of insonations through the selective loss of the more soluble lipopolymer molecules. This work therefore demonstrates high-throughput production of clinically relevant monodisperse contrast microbubbles with excellent control over phospholipid monolayer elasticity and microbubble resonance.

14.
Langmuir ; 32(37): 9410-7, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27552442

RESUMO

Lipid monolayer rheology plays an important role in a variety of interfacial phenomena, the physics of biological membranes, and the dynamic response of acoustic bubbles and drops. We show here measurements of lipid monolayer elasticity and viscosity for very small strains at megahertz frequency. Individual plasmonic microbubbles of 2-6 µm radius were photothermally activated with a short laser pulse, and the subsequent nanometer-scale radial oscillations during ring-down were monitored by optical scatter. This method provided average dynamic response measurements of single microbubbles. Each microbubble was modeled as an underdamped linear oscillator to determine the damping ratio and eigenfrequency, and thus the lipid monolayer viscosity and elasticity. Our nonisothermal measurement technique revealed viscoelastic trends for different lipid shell compositions. We observed a significant increase in surface elasticity with the lipid acyl chain length for 16 to 20 carbons, and this effect was explained by an intermolecular forces model that accounts for the lipid composition, packing, and hydration. The surface viscosity was found to be equivalent for these lipid shells. We also observed an anomalous decrease in elasticity and an increase in viscosity when increasing the acyl chain length from 20 to 22 carbons. These results illustrate the use of a novel nondestructive optical technique to investigate lipid monolayer rheology in new regimes of frequency and strain, possibly elucidating the phase behavior, as well as how the dynamic response of a microbubble can be tuned by the lipid intermolecular forces.


Assuntos
Elasticidade , Lipídeos/química , Microbolhas , Viscosidade
15.
Langmuir ; 31(39): 10656-63, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26359919

RESUMO

This work investigated the use of superheated fluorocarbon nanodrops for ultrasound thermal imaging and the use of mixed fluorocarbons for tuning thermal and acoustic thresholds for vaporization. Droplets were fabricated by condensing phospholipid-coated microbubbles containing C3F8 and C4F10 mixed at various molar ratios. Vaporization temperatures first were measured in a closed system by optical transmission following either isothermal pressure release or isobaric heating. The vaporization temperature was found to depend linearly on the percentage of C4F10 in the droplet core, indicating excellent tunability under these fluorocarbon-saturated conditions. Vaporization temperatures were then measured in an open system using contrast-enhanced ultrasound imaging, where it was found that the mixed droplets behaved like pure C4F10 drops. Additionally, the critical mechanical index for vaporization was measured at the limits of therapeutic hyperthermia (37 and 60 °C), and again the mixed droplets were found to behave like pure C4F10 drops. These results suggested that C3F8 preferentially dissolves out of the droplet core in open systems, as shown by a simple mass transfer model of multicomponent droplet dissolution. Finally, proof-of-concept was shown that pure C4F10 nanodrops can be used as an acoustic temperature probe. Overall, these results not only demonstrate the potential of superheated fluorocarbon emulsions for sonothermetry but also point to the limits of tunability for fluorocarbon mixtures owing to preferential release of the more soluble species to the atmosphere.


Assuntos
Acústica , Fluorocarbonos/química , Nanoestruturas , Temperatura , Modelos Químicos
16.
Langmuir ; 31(16): 4627-34, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25853278

RESUMO

This study explored the thermal conditions necessary for the vaporization of superheated perfluorocarbon nanodrops. Droplets C3F8 and C4F10 coated with a homologous series of saturated diacylphosphatidylcholines were formed by condensation of 4 µm diameter microbubbles. These drops were stable at room temperature and atmospheric pressure, but they vaporized back into microbubbles at higher temperatures. The vaporization transition was measured as a function of temperature by laser light extinction. We found that C3F8 and C4F10 drops experienced 90% vaporization at 40 and 75 °C, respectively, near the theoretical superheat limits (80-90% of the critical temperature). We therefore conclude that the metastabilty of these phase-change agents arises not from the droplet Laplace pressure altering the boiling point, as previously reported, but from the metastability of the pure superheated fluid to homogeneous nucleation. The rate of C4F10 drop vaporization was quantified at temperatures ranging from 55 to 75 °C, and an apparent activation energy barrier was calculated from an Arrhenius plot. Interestingly, the activation energy increased linearly with acyl chain length from C14 to C20, indicating that lipid interchain cohesion plays an important role in suppressing the vaporization rate. The vaporized drops (microbubbles) were found to be unstable to dissolution at high temperatures, particularly for C14 and C16. However, proper choice of the fluorocarbon and lipid species provided a nanoemulsion that could undergo at least ten reversible condensation/vaporization cycles. The vaporization properties presented in this study may facilitate the engineering of tunable phase-shift particles for diagnostic imaging, targeted drug delivery, tissue ablation, and other applications.


Assuntos
Fluorocarbonos/química , Fosfatidilcolinas/química , Temperatura , Fluorocarbonos/síntese química , Tamanho da Partícula , Propriedades de Superfície , Volatilização
17.
Opt Lett ; 39(13): 3732-5, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24978723

RESUMO

We report on the optical excitation and detection of resonant microbubble oscillations. Optically absorbing nanoparticles were attached to the shell of a lipid-encapsulated microbubble, allowing for optical pulsing to photothermally drive the microbubble into resonance. A modified optical microscope was used to track the bubble wall radius as a function of time using light scattering. The microbubble response from a nanosecond laser pulse was measured, and the eigenfrequency and vibrational amplitude were determined and compared to theory. The ability to optically drive microbubble oscillations may have applications in basic studies of bubble dynamics and biomedical imaging and therapy.


Assuntos
Nanopartículas Metálicas , Microbolhas , Materiais Revestidos Biocompatíveis , Meios de Contraste , Ouro , Lasers , Nanopartículas Metálicas/ultraestrutura , Microscopia Acústica/instrumentação , Fenômenos Ópticos , Tamanho da Partícula , Técnicas Fotoacústicas/instrumentação
18.
Langmuir ; 30(21): 6209-18, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24824162

RESUMO

The goal of this study was to explore the thermodynamic conditions necessary to condense aqueous suspensions of lipid-coated gas-filled microbubbles into metastable liquid-filled nanodrops as well as the physicochemical mechanisms involved with this process. Individual perfluorobutane microbubbles and their lipid shells were observed as they were pressurized at 34.5 kPa s(-1) in a microscopic viewing chamber maintained at temperatures ranging from 5 to 75 °C. The microbubbles contracted under pressure, ultimately leading to either full dissolution or microbubble-to-nanodrop condensation. Temperature-pressure phase diagrams conveying condensation and stability transitions were constructed for microbubbles coated with saturated diacylphosphatidylcholine lipids of varying acyl chain length (C16 to C24). The onset of full dissolution was shifted to higher temperatures with the use of longer acyl chain lipids or supersaturated media. Longer chain lipid shells resisted both dissolution of the gas core and mechanical compression through a pronounced wrinkle-to-fold collapse transition. Interestingly, the lipid shell also provided a mechanical resistance to condensation, shifting the vapor-to-liquid transition to higher pressures than for bulk perfluorobutane. This result indicated that the lipid shell can provide a negative apparent surface tension under compression. Overall, the results of this study will aid in the design and formulation of vaporizable fluorocarbon nanodrops for various applications, such as diagnostic ultrasound imaging, targeted drug delivery, and thermal ablation.


Assuntos
Fluorocarbonos/química , Lipídeos/química , Meios de Contraste/química , Sistemas de Liberação de Medicamentos , Desenho de Equipamento , Gases , Microbolhas , Nanotecnologia/métodos , Fosfatidilcolinas/química , Polietilenoglicóis/química , Pressão , Propriedades de Superfície , Temperatura
19.
J Control Release ; 365: 412-421, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000663

RESUMO

Diffuse midline gliomas (DMGs), including diffuse intrinsic pontine glioma, have among the highest mortality rates of all childhood cancers, despite recent advancements in cancer therapeutics. This is partly because, unlike some CNS tumors, the blood-brain barrier (BBB) of DMG tumor vessels remains intact. The BBB prevents the permeation of many molecular therapies into the brain parenchyma, where the cancer cells reside. Focused ultrasound (FUS) with microbubbles has recently emerged as an innovative and exciting technology that non-invasively permeabilizes the BBB in a small focal region with millimeter precision. In this review, current treatment methods and biological barriers to treating DMGs are discussed. State-of-the-art FUS-mediated BBB opening is then examined, with a focus on the effects of various ultrasound parameters and the treatment of DMGs.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Criança , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos , Encéfalo/patologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/diagnóstico por imagem , Glioma/terapia , Glioma/patologia , Microbolhas
20.
J Biomed Mater Res B Appl Biomater ; 112(5): e35416, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747324

RESUMO

The bone formation response of ceramic bone graft materials can be improved by modifying the material's surface and composition. A unique dual-phase ceramic bone graft material with a nanocrystalline, hydroxycarbanoapatite (HCA) surface and a calcium carbonate core (TrelCor®-Biogennix, Irvine, CA) was characterized through a variety of analytical methods. Scanning electron microscopy (SEM) of the TrelCor surface (magnification 100-100,000X) clearly demonstrated a nanosized crystalline structure covering the entire surface. The surface morphology showed a hierarchical structure that included micron-sized spherulites fully covered by plate-like nanocrystals (<60 nm in thickness). Chemical and physical characterization of the material using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy Energy Dispersive X-ray Spectroscopy (SEM-EDX) showed a surface composed of HCA. Analysis of fractured samples confirmed the dual-phase composition with the presence of a calcium carbonate core and HCA surface. An in vitro bioactivity study was conducted to evaluate whether TrelCor would form a bioactive layer when immersed in simulated body fluid. This response was compared to a known bioactive material (45S5 bioactive glass - Bioglass). Following 14-days of immersion, surface and cross-sectional analysis via SEM-EDX showed that the TrelCor material elicited a bioactive response with the formation of a bioactive layer that was qualitatively thicker than the layer that formed on Bioglass. An in vivo sheep muscle pouch model was also conducted to evaluate the ability of the material to stimulate an ectopic, cellular bone formation response. Results were compared against Bioglass and a first-generation calcium phosphate ceramic that lacked a nanocrystalline surface. Histology and histomorphometric analysis (HMA) confirmed that the TrelCor nanocrystalline HCA surface stimulated a bone formation response in muscle (avg. 11% bone area) that was significantly greater than Bioglass (3%) and the smooth surface calcium phosphate ceramic (0%).


Assuntos
Substitutos Ósseos , Nanopartículas , Animais , Substitutos Ósseos/química , Nanopartículas/química , Cerâmica/química , Teste de Materiais , Durapatita/química , Ovinos , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Difração de Raios X , Transplante Ósseo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA