Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Chem Inf Model ; 64(9): 3605-3609, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38640478

RESUMO

Double decoupling absolute binding free energy simulations require an intermediate state at which the ligand is held solely by restraints in a position and orientation resembling the bound state. One possible choice consists of one distance, two angle, and three dihedral angle restraints. Here, I demonstrate that in practically all cases the analytical correction derived under the rigid rotator harmonic oscillator approximation is sufficient to account for the free energy of the restraints.


Assuntos
Termodinâmica , Ligantes , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Simulação de Dinâmica Molecular , Modelos Moleculares
2.
Molecules ; 28(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37241747

RESUMO

Non-equilibrium work switching simulations and Jarzynski's equation are a reliable method for computing free energy differences, ΔAlow→high, between two levels of theory, such as a pure molecular mechanical (MM) and a quantum mechanical/molecular mechanical (QM/MM) description of a system of interest. Despite the inherent parallelism, the computational cost of this approach can quickly become very high. This is particularly true for systems where the core region, the part of the system to be described at different levels of theory, is embedded in an environment such as explicit solvent water. We find that even for relatively simple solute-water systems, switching lengths of at least 5 ps are necessary to compute ΔAlow→high reliably. In this study, we investigate two approaches towards an affordable protocol, with an emphasis on keeping the switching length well below 5 ps. Inserting a hybrid charge intermediate state with modified partial charges, which resembles the charge distribution of the desired high level, makes it possible to obtain reliable calculations with 2 ps switches. Attempts using step-wise linear switching paths, on the other hand, did not lead to improvement, i.e., a faster convergence for all systems. To understand these findings, we analyzed the solutes' properties as a function of the partial charges used and the number of water molecules in direct contact with the solute, and studied the time needed for water molecules to reorient themselves upon a change in the solute's charge distribution.

3.
J Comput Chem ; 43(17): 1151-1160, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35485139

RESUMO

We describe the theory of the so-called common-core/serial-atom-insertion (CC/SAI) approach to compute alchemical free energy differences and its practical implementation in a Python package called Transformato. CC/SAI is not tied to a specific biomolecular simulation program and does not rely on special purpose code for alchemical transformations. To calculate the alchemical free energy difference between several small molecules, the physical end-states are mutated into a suitable common core. Since this only requires turning off interactions, the setup of intermediate states is straightforward to automate. Transformato currently supports CHARMM and OpenMM as back ends to carry out the necessary molecular dynamics simulations, as well as post-processing calculations. We validate the method by computing a series of relative solvation free energy differences.


Assuntos
Simulação de Dinâmica Molecular , Entropia , Termodinâmica
4.
J Chem Phys ; 152(9): 094105, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33480729

RESUMO

Ionic liquids are an interesting class of soft matter with viscosities of one or two orders of magnitude higher than that of water. Unfortunately, classical, non-polarizable molecular dynamics (MD) simulations of ionic liquids result in too slow dynamics and demonstrate the need for explicit inclusion of polarizability. The inclusion of polarizability, here via the Drude oscillator model, requires amendments to the employed thermostat, where we consider a dual Nosé-Hoover thermostat, as well as a dual Langevin thermostat. We investigate the effects of the choice of a thermostat and the underlying parameters such as the masses and force constants of the Drude particles on static and dynamic properties of ionic liquids. Here, we show that Langevin thermostats are not suitable for investigating the dynamics of ionic liquids. Since polarizable MD simulations are associated with high computational costs, we employed a self-developed graphics processing unit enhanced code within the MD program CHARMM to keep the overall computational effort reasonable.

5.
Molecules ; 24(4)2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769826

RESUMO

Indirect (S)QM/MM free energy simulations (FES) are vital to efficiently incorporating sufficient sampling and accurate (QM) energetic evaluations when estimating free energies of practical/experimental interest. Connecting between levels of theory, i.e., calculating Δ A l o w → h i g h , remains to be the most challenging step within an indirect FES protocol. To improve calculations of Δ A l o w → h i g h , we must: (1) compare the performance of all FES methods currently available; and (2) compile and maintain datasets of Δ A l o w → h i g h calculated for a wide-variety of molecules so that future practitioners may replicate or improve upon the current state-of-the-art. Towards these two aims, we introduce a new dataset, "HiPen", which tabulates Δ A g a s M M → 3 o b (the free energy associated with switching from an M M to an S C C - D F T B molecular description using the 3ob parameter set in gas phase), calculated for 22 drug-like small molecules. We compare the calculation of this value using free energy perturbation, Bennett's acceptance ratio, Jarzynski's equation, and Crooks' equation. We also predict the reliability of each calculated Δ A g a s M M → 3 o b by evaluating several convergence criteria including sample size hysteresis, overlap statistics, and bias metric ( Π ). Within the total dataset, three distinct categories of molecules emerge: the "good" molecules, for which we can obtain converged Δ A g a s M M → 3 o b using Jarzynski's equation; "bad" molecules which require Crooks' equation to obtain a converged Δ A g a s M M → 3 o b ; and "ugly" molecules for which we cannot obtain reliably converged Δ A g a s M M → 3 o b with either Jarzynski's or Crooks' equations. We discuss, in depth, results from several example molecules in each of these categories and describe how dihedral discrepancies between levels of theory cause convergence failures even for these gas phase free energy simulations.


Assuntos
Metabolismo Energético , Proteínas/metabolismo , Termodinâmica , Água/metabolismo , Entropia , Teoria Quântica
6.
J Chem Inf Model ; 58(8): 1682-1696, 2018 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-30028134

RESUMO

The structural resolution of a bound ligand-receptor complex is a key asset to efficiently drive lead optimization in drug design. However, structural resolution of many drug targets still remains a challenging endeavor. In the absence of structural knowledge, scientists resort to structure-activity relationships (SARs) to promote compound development. In this study, we incorporated ligand-based knowledge to formulate a docking scoring function that evaluates binding poses for their agreement with a known SAR. We showcased this protocol by identifying the binding mode of the pyrazoloquinolinone (PQ) CGS-8216 at the benzodiazepine binding site of the GABAA receptor. Further evaluation of the final pose by molecular dynamics and free energy simulations revealed a close proximity between the pendent phenyl ring of the PQ and γ2D56, congruent with the low potency of carboxyphenyl analogues. Ultimately, we introduced the γ2D56A mutation and in fact observed a 10-fold potency increase in the carboxyphenyl analogue, providing experimental evidence in favor of our binding hypothesis.


Assuntos
Pirazóis/farmacologia , Receptores de GABA-A/metabolismo , Benzodiazepinas/metabolismo , Sítios de Ligação , Humanos , Ligantes , Simulação de Acoplamento Molecular , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Pirazóis/química , Receptores de GABA-A/química , Software , Relação Estrutura-Atividade
7.
J Comput Chem ; 38(16): 1376-1388, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28272811

RESUMO

We demonstrate that Jarzynski's equation can be used to reliably compute free energy differences between low and high level representations of systems. The need for such a calculation arises when employing the so-called "indirect" approach to free energy simulations with mixed quantum mechanical/molecular mechanical (QM/MM) Hamiltonians; a popular technique for circumventing extensive simulations involving quantum chemical computations. We have applied this methodology to several small and medium sized organic molecules, both in the gas phase and explicit solvent. Test cases include several systems for which the standard approach; that is, free energy perturbation between low and high level description, fails to converge. Finally, we identify three major areas in which the difference between low and high level representations make the calculation of ΔAlow→high difficult: bond stretching and angle bending, different preferred conformations, and the response of the MM region to the charge distribution of the QM region. © 2016 Wiley Periodicals, Inc.

8.
J Chem Inf Model ; 57(2): 365-385, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28072524

RESUMO

We present a new approach that incorporates flexibility based on extensive MD simulations of protein-ligand complexes into structure-based pharmacophore modeling and virtual screening. The approach uses the multiple coordinate sets saved during the MD simulations and generates for each frame a pharmacophore model. Pharmacophore models with the same pharmacophore features are pooled. In this way the high number of pharmacophore models that results from the MD simulation is reduced to only a few hundred representative pharmacophore models. Virtual screening runs are performed with every representative pharmacophore model; the screening results are combined and rescored to generate a single hit-list. The score for a particular molecule is calculated based on the number of representative pharmacophore models which classified it as active. Hence, the method is called common hits approach (CHA). The steps between the MD simulation and the final hit-list are performed automatically and without user interaction. We test the performance of CHA for virtual screening using screening databases with active and inactive compounds for 40 protein-ligand systems. The results of the CHA are compared to the (i) median screening performance of all representative pharmacophore models of protein-ligand systems, as well as to the virtual screening performance of (ii) a random classifier, (iii) the pharmacophore model derived from the experimental structure in the PDB, and (iv) the representative pharmacophore model appearing most frequently during the MD simulation. For the 34 (out of 40) protein-ligand complexes, for which at least one of the approaches was able to perform better than a random classifier, the highest enrichment was achieved using CHA in 68% of the cases, compared to 12% for the PDB pharmacophore model and 20% for the representative pharmacophore model appearing most frequently. The availabilithy of diverse sets of different pharmacophore models is utilized to analyze some additional questions of interest in 3D pharmacophore-based virtual screening.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Simulação de Dinâmica Molecular , Ligantes , Proteínas/química , Proteínas/metabolismo , Interface Usuário-Computador
9.
Biochim Biophys Acta ; 1850(5): 944-953, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25239198

RESUMO

BACKGROUND: Accurately modeling condensed phase processes is one of computation's most difficult challenges. Include the possibility that conformational dynamics may be coupled to chemical reactions, where multiscale (i.e., QM/MM) methods are needed, and this task becomes even more daunting. METHODS: Free energy simulations (i.e., molecular dynamics), multiscale modeling, and reweighting schemes. RESULTS: Herein, we present two new approaches for mitigating the aforementioned challenges. The first is a new chain-of-replica method (off-path simulations, OPS) for computing potentials of mean force (PMFs) along an easily defined reaction coordinate. This development is coupled with a new distributed, highly-parallel replica framework (REPDstr) within the CHARMM package. Validation of these new schemes is carried out on two processes that undergo conformational changes. First is the simple torsional rotation of butane, while a much more challenging glycosidic rotation (in vacuo and solvated) is the second. Additionally, a new approach that greatly improves (i.e., possibly an order of magnitude) the efficiency of computing QM/MM PMFs is introduced and compared to standard schemes. Our efforts are grounded in the recently developed method for efficiently computing QM-based free energies (i.e., QM-Non-Boltzmann Bennett, QM-NBB). Again, we validate this new technique by computing the QM/MM PMF of butane's torsional rotation. CONCLUSIONS: The OPS-REPDstr method is a promising new approach that overcomes many limitations of standard pathway simulations in CHARMM. The combination of QM-NBB with pathway techniques is very promising as it offers significant advantages over current procedures. GENERAL SIGNIFICANCE: Efficiently computing potentials of mean force is a major, unresolved, area of interest. This article is part of a Special Issue entitled Recent developments of molecular dynamics.


Assuntos
Algoritmos , Simulação de Dinâmica Molecular , Butanos/química , Configuração de Carboidratos , Transferência de Energia , Maltose/química , Estrutura Molecular , Reprodutibilidade dos Testes , Rotação , Solventes/química , Torção Mecânica
10.
Biochem Biophys Res Commun ; 470(3): 685-689, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26785387

RESUMO

Molecular dynamics simulations of twelve protein-ligand systems were used to derive a single, structure based pharmacophore model for each system. These merged models combine the information from the initial experimental structure and from all snapshots saved during the simulation. We compared the merged pharmacophore models with the corresponding PDB pharmacophore models, i.e., the static models generated from an experimental structure in the usual manner. The frequency of individual features, of feature types and the occurrence of features not present in the static model derived from the experimental structure were analyzed. We observed both pharmacophore features not visible in the traditional approach, as well as features which disappeared rapidly during the molecular dynamics simulations and which may well be artifacts of the initial PDB structure-derived pharmacophore model. Our approach helps mitigate the sensitivity of structure based pharmacophore models to the single set of coordinates present in the experimental structure. Further, the frequency with which specific features occur during the MD simulation may aid in ranking the importance of individual features.


Assuntos
Desenho de Fármacos , Modelos Químicos , Simulação de Dinâmica Molecular , Proteínas/química , Proteínas/ultraestrutura , Sítios de Ligação , Ligação de Hidrogênio , Ligantes , Ligação Proteica , Conformação Proteica
11.
PLoS Comput Biol ; 10(7): e1003719, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25057988

RESUMO

This article describes the development, implementation, and use of web-based "lessons" to introduce students and other newcomers to computer simulations of biological macromolecules. These lessons, i.e., interactive step-by-step instructions for performing common molecular simulation tasks, are integrated into the collaboratively developed CHARMM INterface and Graphics (CHARMMing) web user interface (http://www.charmming.org). Several lessons have already been developed with new ones easily added via a provided Python script. In addition to CHARMMing's new lessons functionality, web-based graphical capabilities have been overhauled and are fully compatible with modern mobile web browsers (e.g., phones and tablets), allowing easy integration of these advanced simulation techniques into coursework. Finally, one of the primary objections to web-based systems like CHARMMing has been that "point and click" simulation set-up does little to teach the user about the underlying physics, biology, and computational methods being applied. In response to this criticism, we have developed a freely available tutorial to bridge the gap between graphical simulation setup and the technical knowledge necessary to perform simulations without user interface assistance.


Assuntos
Biologia Computacional/educação , Simulação por Computador , Instrução por Computador/métodos , Bases de Dados de Proteínas , Internet , Modelos Moleculares , Software
12.
J Chem Phys ; 140(6): 064107, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24527900

RESUMO

Long-term molecular dynamics simulations are used to compare the single particle dipole reorientation time, the diffusion constant, the viscosity, and the frequency-dependent dielectric constant of the coarse-grained big multipole water (BMW) model to two common atomistic three-point water models, SPC/E and TIP3P. In particular, the agreement between the calculated viscosity of BMW and the experimental viscosity of water is satisfactory. We also discuss contradictory values for the static dielectric properties reported in the literature. Employing molecular hydrodynamics, we show that the viscosity can be computed from single particle dynamics, circumventing the slow convergence of the standard approaches. Furthermore, our data indicate that the Kivelson relation connecting single particle and collective reorientation time holds true for all systems investigated. Since simulations with coarse-grained force fields often employ extremely large time steps, we also investigate the influence of time step on dynamical properties. We observe a systematic acceleration of system dynamics when increasing the time step. Carefully monitoring energy/temperature conservation is found to be a sufficient criterion for the reliable calculation of dynamical properties. By contrast, recommended criteria based on the ratio of fluctuations of total vs. kinetic energy are not sensitive enough.


Assuntos
Simulação de Dinâmica Molecular , Água/química , Simulação por Computador , Difusão , Eletricidade , Modelos Químicos , Viscosidade
13.
J Chem Theory Comput ; 20(7): 2719-2728, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38527958

RESUMO

To achieve chemical accuracy in free energy calculations, it is necessary to accurately describe the system's potential energy surface and efficiently sample configurations from its Boltzmann distribution. While neural network potentials (NNPs) have shown significantly higher accuracy than classical molecular mechanics (MM) force fields, they have a limited range of applicability and are considerably slower than MM potentials, often by orders of magnitude. To address this challenge, Rufa et al. [Rufa et al. bioRxiv 2020, 10.1101/2020.07.29.227959.] suggested a two-stage approach that uses a fast and established MM alchemical energy protocol, followed by reweighting the results using NNPs, known as endstate correction or indirect free energy calculation. This study systematically investigates the accuracy and robustness of reweighting from an MM reference to a neural network target potential (ANI-2x) for an established data set in vacuum, using single-step free-energy perturbation (FEP) and nonequilibrium (NEQ) switching simulation. We assess the influence of longer switching lengths and the impact of slow degrees of freedom on outliers in the work distribution and compare the results to those of multistate equilibrium free energy simulations. Our results demonstrate that free energy calculations between NNPs and MM potentials should be preferably performed using NEQ switching simulations to obtain accurate free energy estimates. NEQ switching simulations between the MM potentials and NNPs are efficient, robust, and trivial to implement.

14.
J Phys Chem B ; 128(28): 6693-6703, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38976601

RESUMO

We present a comprehensive study investigating the potential gain in accuracy for calculating absolute solvation free energies (ASFE) using a neural network potential to describe the intramolecular energy of the solute. We calculated the ASFE for most compounds from the FreeSolv database using the Open Force Field (OpenFF) and compared them to earlier results obtained with the CHARMM General Force Field (CGenFF). By applying a nonequilibrium (NEQ) switching approach between the molecular mechanics (MM) description (either OpenFF or CGenFF) and the neural net potential (NNP)/MM level of theory (using ANI-2x as the NNP potential), we attempted to improve the accuracy of the calculated ASFEs. The predictive performance of the results did not change when this approach was applied to all 589 small molecules in the FreeSolv database that ANI-2x can describe. When selecting a subset of 156 molecules, focusing on compounds where the force fields performed poorly, we saw a slight improvement in the root-mean-square error (RMSE) and mean absolute error (MAE). The majority of our calculations utilized unidirectional NEQ protocols based on Jarzynski's equation. Additionally, we conducted bidirectional NEQ switching for a subset of 156 solutes. Notably, only a small fraction (10 out of 156) exhibited statistically significant discrepancies between unidirectional and bidirectional NEQ switching free energy estimates.

15.
Biophys J ; 104(2): 453-62, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23442867

RESUMO

Most proteins perform their function in aqueous solution. The interactions with water determine the stability of proteins and the desolvation costs of ligand binding or membrane insertion. However, because of experimental restrictions, absolute solvation free energies of proteins or amino acids are not available. Instead, solvation free energies are estimated based on side chain analog data. This approach implies that the contributions to free energy differences are additive, and it has often been employed for estimating folding or binding free energies. However, it is not clear how much the additivity assumption affects the reliability of the resulting data. Here, we use molecular dynamics-based free energy simulations to calculate absolute hydration free energies for 15 N-acetyl-methylamide amino acids with neutral side chains. By comparing our results with solvation free energies for side chain analogs, we demonstrate that estimates of solvation free energies of full amino acids based on group-additive methods are systematically too negative and completely overestimate the hydrophobicity of glycine. The largest deviation of additive protocols using side chain analog data was 6.7 kcal/mol; on average, the deviation was 4 kcal/mol. We briefly discuss a simple way to alleviate the errors incurred by using side chain analog data and point out the implications of our findings for the field of biophysics and implicit solvent models. To support our results and conclusions, we calculate relative protein stabilities for selected point mutations, yielding a root-mean-square deviation from experimental results of 0.8 kcal/mol.


Assuntos
Aminoácidos/química , Proteínas/química , Solventes/química , Água/química , Animais , Bovinos , Simulação por Computador , Desnaturação Proteica , Estabilidade Proteica , Ratos , Termodinâmica
16.
J Comput Chem ; 34(12): 1024-34, 2013 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-23335287

RESUMO

The performances of Bennett's acceptance ratio method and thermodynamic integration (TI) for the calculation of free energy differences in protein simulations are compared. For the latter, the standard trapezoidal rule, Simpson's rule, and Clenshaw-Curtis integration are used as numerical integration methods. We evaluate the influence of the number and definition of intermediate states on the precision, accuracy, and efficiency of the free energy calculations. Our results show that non-equidistantly spaced intermediate states are in some cases beneficial for the TI methods. Using several combinations of softness parameters and the λ power dependence, it is shown that these benefits are strongly dependent on the shape of the integrand. Although TI is more user-friendly due to its simplicity, it was found that Bennett's acceptance ratio method is the more efficient method. It is also the least dependent on the choice of the intermediate states, making it more robust than TI.


Assuntos
Modelos Químicos , Simulação de Dinâmica Molecular , Termodinâmica , Benzamidinas/química , Ligação Proteica , Inibidores da Tripsina/química
17.
J Chem Theory Comput ; 19(17): 5988-5998, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37616333

RESUMO

We recently introduced transformato, an open-source Python package for the automated setup of large-scale calculations of relative solvation and binding free energy differences. Here, we extend the capabilities of transformato to the calculation of absolute solvation free energy differences. After careful validation against the literature results and reference calculations with the PERT module of CHARMM, we used transformato to compute absolute solvation free energies for most molecules in the FreeSolv database (621 out of 642). The force field parameters were obtained with the program cgenff (v2.5.1), which derives missing parameters from the CHARMM general force field (CGenFF v4.6). A long-range correction for the Lennard-Jones interactions was added to all computed solvation free energies. The mean absolute error compared to the experimental data is 1.12 kcal/mol. Our results allow a detailed comparison between the AMBER and CHARMM general force fields and provide a more in-depth understanding of the capabilities and limitations of the CGenFF small molecule parameters.

18.
J Phys Chem B ; 126(15): 2798-2811, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35404610

RESUMO

A key step during indirect alchemical free energy simulations using quantum mechanical/molecular mechanical (QM/MM) hybrid potential energy functions is the calculation of the free energy difference ΔAlow→high between the low level (e.g., pure MM) and the high level of theory (QM/MM). A reliable approach uses nonequilibrium work (NEW) switching simulations in combination with Jarzynski's equation; however, it is computationally expensive. In this study, we investigate whether it is more efficient to use more shorter switches or fewer but longer switches. We compare results obtained with various protocols to reference free energy differences calculated with Crooks' equation. The central finding is that fewer longer switches give better converged results. As few as 200 sufficiently long switches lead to ΔAlow→high values in good agreement with the reference results. This optimized protocol reduces the computational cost by a factor of 40 compared to earlier work. We also describe two tools/ways of analyzing the raw data to detect sources of poor convergence. Specifically, we find it helpful to analyze the raw data (work values from the NEW switching simulations) in a quasi-time series-like manner. Principal component analysis helps to detect cases where one or more conformational degrees of freedom are different at the low and high level of theory.


Assuntos
Teoria Quântica , Entropia , Conformação Molecular , Termodinâmica
19.
Front Mol Biosci ; 9: 954638, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148009

RESUMO

We present the software package transformato for the setup of large-scale relative binding free energy calculations. Transformato is written in Python as an open source project (https://github.com/wiederm/transformato); in contrast to comparable tools, it is not closely tied to a particular molecular dynamics engine to carry out the underlying simulations. Instead of alchemically transforming a ligand L 1 directly into another L 2, the two ligands are mutated to a common core. Thus, while dummy atoms are required at intermediate states, in particular at the common core state, none are present at the physical endstates. To validate the method, we calculated 76 relative binding free energy differences Δ Δ G L 1 → L 2 b i n d for five protein-ligand systems. The overall root mean squared error to experimental binding free energies is 1.17 kcal/mol with a Pearson correlation coefficient of 0.73. For selected cases, we checked that the relative binding free energy differences between pairs of ligands do not depend on the choice of the intermediate common core structure. Additionally, we report results with and without hydrogen mass reweighting. The code currently supports OpenMM, CHARMM, and CHARMM/OpenMM directly. Since the program logic to choose and construct alchemical transformation paths is separated from the generation of input and topology/parameter files, extending transformato to support additional molecular dynamics engines is straightforward.

20.
J Comput Chem ; 32(11): 2449-58, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21607991

RESUMO

In the past analyses of the so-called van der Waals end point problem focused on thermodynamic integration. Here we investigate which of the recommendations, such as the need for soft-core potentials, are still valid when Bennett's acceptance ratio method is used. We show that in combination with Bennett's acceptance ratio method intermediate states characterized by the coupling parameter λ can be replaced by intermediate states in which Lennard-Jones interactions are turned on or off on an "atom by atom" basis. By doing so, there is no necessity to use soft-core potentials. In fact, one can compute free energy differences without dedicated code, making it possible to use any molecular dynamics program to compute alchemical free energy differences. Such an approach, which we illustrate by several examples, makes it possible to exploit the tremendous computational power of the graphics processing unit.


Assuntos
Simulação de Dinâmica Molecular , Metanol/química , Termodinâmica , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA