Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cellulose (Lond) ; 30(4): 2353-2365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36624885

RESUMO

Rapid diagnostic systems are essential in controlling the spread of viral pathogens and efficient patient management. The available technologies for low-cost viral antigen testing have several limitations, including a lack of accuracy and sensitivity. Here, we introduce a platform based on cellulose II nanoparticles (oppositely charged NPan and NPcat) for effective control of surface protein interactions, leading to rapid and sensitive antigen tests. Passivation against non-specific adsorption and augmented immobilization of sensing antibodies is achieved by adjusting the electrostatic charge of the nanoparticles. The interactions affecting the performance of the system are investigated by microgravimetry and confocal imaging. As a proof-of-concept test, SARS-CoV-2 nucleocapsid sensing was carried out by using saliva-wicking by channels that were stencil-printed on paper. We conclude that inkjet-printed NPcat elicits strong optical signals, visible after a few minutes, opening the opportunity for cost-effective and rapid diagnostic. Supplementary Information: The online version contains supplementary material available at 10.1007/s10570-022-05038-y.

2.
Small ; 16(50): e2004702, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33215868

RESUMO

Soft cationic core/shell cellulose nanospheres can deform and interpenetrate allowing their self-assembly into densely packed colloidal nanogel layers. Taking advantage of their water-swelling capacity and molecular accessibility, the nanogels are proposed as a new and promising type of coating material to immobilize bioactive molecules on thin films and paper. The specific and nonspecific interactions between the cellulosic nanogel and human immunoglobulin G as well as bovine serum albumin (BSA) are investigated. Confocal microscopy, electroacoustic microgravimetry, and surface plasmon resonance are used to access information about the adsorption behavior and viscoelastic properties of self-assembled nanogels. A significant BSA adsorption capacity on nanogel layers (17 mg m-2 ) is measured, 300% higher compared to typical polymer coatings. This high protein affinity further confirms the promise of the introduced colloidal gel layer, in increasing sensitivity and advancing a new generation of substrates for a variety of applications, including immunoassays, as demonstrated in this work.


Assuntos
Celulose , Nanosferas , Adsorção , Humanos , Imunoensaio , Soroalbumina Bovina , Propriedades de Superfície
3.
Biomacromolecules ; 20(1): 502-514, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30540441

RESUMO

Cellulose nanofiber films (CNFF) were treated via a welding process using ionic liquids (ILs). Acid-base-conjugated ILs derived from 1,5-diazabicyclo[4.3.0]non-5-ene [DBN] and 1-ethyl-3-methylimidazolium acetate ([emim][OAc]) were utilized. The removal efficiency of ILs from welded CNFF was assessed using liquid-state nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared spectroscopy (FTIR). The mechanical and physical properties of CNFF indicated surface plasticization of CNFF, which improved transparency. Upon treatment, the average CNFF toughness increased by 27%, and the films reached a Young's modulus of ∼5.8 GPa. These first attempts for IL "welding" show promise to tune the surfaces of biobased films, expanding the scope of properties for the production of new biobased materials in a green chemistry context. The results of this work are highly relevant to the fabrication of CNFFs using ionic liquids and related solvents.


Assuntos
Celulose/análogos & derivados , Líquidos Iônicos/química , Nanofibras/química , Plásticos Biodegradáveis/química , Módulo de Elasticidade , Imidazóis/química , Membranas Artificiais
4.
Biomacromolecules ; 20(2): 1036-1044, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30576124

RESUMO

Two-dimensional (hydrophilic) channels were patterned on films prepared from cellulose nanofibrils (CNF) using photolithography and inkjet printing. Such processes included UV-activated thiol-yne click coupling and inkjet-printed designs with polystyrene. The microfluidic channels were characterized (SEM, wetting, and fluid flow) and applied as platforms for biosensing. Compared to results from the click method, a better feature fidelity and flow properties were achieved with the simpler inkjet-printed channels. Human immunoglobulin G (hIgG) was used as target protein after surface modification with either bovine serum albumin (BSA), fibrinogen, or block copolymers of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) (PDMAEMA- block-POEGMA copolymers). Surface plasmon resonance (SPR) and AFM imaging were used to determine their antifouling effect to prevent nonspecific hIgG binding. Confocal laser scanning microscopy revealed diffusion and adsorption traces in the channels. The results confirm an effective surface passivation of the microfluidic channels (95% reduction of hIgG adsorption and binding). The inexpensive and disposable systems proposed here allow designs with space-resolved blocking efficiency that offer a great potential in biosensing.


Assuntos
Técnicas Biossensoriais/métodos , Nanofibras/química , Nanopartículas/química , Celulose/química , Etilenoglicol/química , Fibrinogênio/química , Humanos , Imunoglobulina G/química , Metacrilatos/química , Nylons/química , Polietilenoglicóis/química , Polímeros/química , Poliestirenos/química , Impressão/métodos , Soroalbumina Bovina/química , Ressonância de Plasmônio de Superfície/métodos , Propriedades de Superfície
5.
Biomacromolecules ; 19(7): 2931-2943, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29754482

RESUMO

Outstanding optical and mechanical properties can be obtained from hierarchical assemblies of nanoparticles. Herein, the formation of helically ordered, chiral nematic films obtained from aqueous suspensions of cellulose nanocrystals (CNCs) were studied as a function of the initial suspension state. Specifically, nanoparticle organization and the structural colors displayed by the resultant dry films were investigated as a function of the anisotropic volume fraction (AVF), which depended on the initial CNC concentration and equilibration time. The development of structural color and the extent of macroscopic stratification were studied by optical and scanning electron microscopy as well as UV-vis spectroscopy. Overall, suspensions above the critical threshold required for formation of liquid crystals resulted in CNC films assembled with longer ranged order, more homogeneous pitches along the cross sections, and narrower specific absorption bands. This effect was more pronounced for the suspensions that were closer to equilibrium prior to drying. Thus, we show that high AVF and more extensive phase separation in CNC suspensions resulted in large, long-range ordered chiral nematic domains in dried films. Additionally, the average CNC aspect ratio and size distribution in the two separated phases were measured and correlated to the formation of structured domains in the dried assemblies.


Assuntos
Celulose/análogos & derivados , Nanopartículas/química , Anisotropia , Cristais Líquidos/química
6.
Small ; 13(47)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29083528

RESUMO

Hierarchically structured materials comprising rod-like, chiral, nanoparticles are commonly encountered in nature as they can form assemblies with exceptional optical and mechanical characteristics. These include cellulose nanocrystals (CNCs), which have a large potential for the fabrication of bioinspired materials mimicking those advanced properties. Fine-tuning the optomechanical properties of assemblies obtained from CNCs hinges on the transformations from suspensions of liquid crystals to long-range order in the dry state. So far, associated transitions have been studied using trivial interfaces such as planar substrates. Such transitions are explored as they evolve onto meshed supports. The meshed substrate offers a complex topology, as is encountered in nature, for the formation of CNCs films. The CNCs self-assembly occurs under confinement and support of the framework bounding the mesh openings. This leads to coexisting suspended and supported nanoparticle layers exhibiting nematic and/or chiral nematic order. Optical microscopy combined with crossed polarizers indicate that the formation of the suspended films occurs via intermediate gelation or kinetic arrest of CNCs across the mesh's open areas. The formation of self-standing, ultrathin films of CNCs with tunable optical properties, such as selective reflections in the visible range (structural color), is demonstrated by using the presented simple and scalable approach.

7.
Biomacromolecules ; 18(6): 1803-1813, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28436646

RESUMO

We demonstrate benzophenone (BP) conjugation via amine-reactive esters onto oxidized cellulosic fibers that were used as precursors, after microfluidization, of photoactive cellulose nanofibrils (CNF). From these fibrils, cellulose I filaments were synthesized by hydrogel spinning in an antisolvent followed by fast biradical UV cross-linking. As a result, the wet BP-CNF filaments retained extensively the original dry strength (a remarkable ∼80% retention). Thus, the principal limitation of these emerging materials was overcome (the wet tensile strength is typically <0.5% of the value measured in dry conditions). Subsequently, antihuman hemoglobin (anti-Hb) antibodies were conjugated onto residual surface carboxyl groups, making the filaments bifunctional for their active groups and properties (wet strength and bioactivity). Optical (surface plasmon resonance) and electroacoustic (quartz crystal microgravimetry) measurements conducted with the bifunctional CNF indicated effective anti-Hb conjugation (2.4 mg m-2), endowing an excellent sensitivity toward Hb targets (1.7 ± 0.12 mg m-2) and negligible nonspecific binding. Thus, the anti-Hb biointerface was deployed on filaments that captured Hb efficiently from aqueous matrices (confocal laser microscopy of FITC-labeled antibodies). Significantly, the anti-Hb biointerface was suitable for regeneration, while its sensitivity and selectivity in affinity binding can be tailored by application of blocking copolymers. The developed bifunctional filaments based on nanocellulose offer great promise in detection and affinity binding built upon 1D systems, which can be engineered into other structures for rational use of material and space.


Assuntos
Anticorpos/química , Benzofenonas/química , Celulose/química , Hemoglobinas/isolamento & purificação , Hidrogéis/química , Nanofibras/química , Anticorpos Imobilizados , Técnicas Eletroquímicas , Fluoresceína-5-Isotiocianato , Corantes Fluorescentes , Hemoglobinas/química , Humanos , Nanofibras/ultraestrutura , Processos Fotoquímicos , Ligação Proteica , Soluções , Resistência à Tração , Raios Ultravioleta , Molhabilidade
8.
Biomacromolecules ; 18(12): 4393-4404, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29131593

RESUMO

Cellulose nanofibrils (CNF) offer great prospects as a natural stabilizer of colloidal dispersions and complex fluids for application in food, pharma, and cosmetics. In this study, an ionic surfactant (sodium dodecyl sulfate, SDS) was used as emulsifier of oil-in-water and water-in-oil emulsions that were further costabilized by addition of CNF. The adsorption properties of SDS in both, CNF dispersions and emulsions, as well as the influence of composition (CNF and SDS concentration) and formulation (ionic strength, oil, and CNF types) on the phase behavior were elucidated and described in the framework of Windsor systems. At low salinity, the phase transition of emulsions containing CNF and SDS at low concentrations was controlled by molecular transfer in the oil-in-water system. Irregular droplets and "bi-continuous" morphologies were observed at medium and high salinity for systems containing high CNF and SDS concentrations. Water-in-oil emulsions were only possible at high salinity and SDS concentrations in the presence of small amounts of CNF. The results revealed some subtle differences in CNF interfacial activity, depending on the method used for their isolation via fiber deconstruction, either from microfluidization or aqueous counter collision. Overall, we propose that the control of emulsion morphology and stability by addition of CNF opens the possibility of developing environmentally friendly complex systems that display high stability and respond to ionic strength following the expectations of classical emulsion systems.


Assuntos
Celulose/química , Emulsões/química , Nanofibras/química , Tensoativos/química , Química Farmacêutica/métodos , Emulsificantes/química , Concentração Osmolar , Transição de Fase , Dodecilsulfato de Sódio/química , Água/química
10.
Nanomaterials (Basel) ; 11(9)2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34578496

RESUMO

Single-layer ceramic fuel cells consisting of Li0.15Ni0.45Zn0.4O2, Gd0.2Ce0.8O2 and a eutectic mixture of Li2CO3, Na2CO3 and K2CO3, were fabricated through extrusion-based 3D printing. The sintering temperature of the printed cells was varied from 700 °C to 1000 °C to identify the optimal thermal treatment to maximize the cell performance. It was found that the 3D printed single-layer cell sintered at 900 °C produced the highest power density (230 mW/cm2) at 550 °C, which is quite close to the performance (240 mW/cm2) of the single-layer cell fabricated through a conventional pressing method. The best printed cell still had high ohmic (0.46 Ω·cm2) and polarization losses (0.32 Ω·cm2) based on EIS measurements conducted in an open-circuit condition. The XRD spectra showed the characteristic peaks of the crystalline structures in the composite material. HR-TEM, SEM and EDS measurements revealed the morphological information of the composite materials and the distribution of the elements, respectively. The BET surface area of the single-layer cells was found to decrease from 2.93 m2/g to 0.18 m2/g as the sintering temperature increased from 700 °C to 1000 °C. The printed cell sintered at 900 °C had a BET surface area of 0.34 m2/g. The fabrication of single-layer ceramic cells through up-scalable 3D technology could facilitate the scaling up and commercialization of this promising fuel cell technology.

11.
ACS Nano ; 15(4): 6774-6786, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33779142

RESUMO

Multiscale carbon supraparticles (SPs) are synthesized by soft-templating lignin nano- and microbeads bound with cellulose nanofibrils (CNFs). The interparticle connectivity and nanoscale network in the SPs are studied after oxidative thermostabilization of the lignin/CNF constructs. The carbon SPs are formed by controlled sintering during carbonization and develop high mechanical strength (58 N·mm-3) and surface area (1152 m2·g-1). Given their features, the carbon SPs offer hierarchical access to adsorption sites that are well suited for CO2 capture (77 mg CO2·g-1), while presenting a relatively low pressure drop (∼33 kPa·m-1 calculated for a packed fixed-bed column). The introduced lignin-derived SPs address the limitations associated with mass transport (diffusion of adsorbates within channels) and kinetics of systems that are otherwise based on nanoparticles. Moreover, the carbon SPs do not require doping with heteroatoms (as tested for N) for effective CO2 uptake (at 1 bar CO2 and 40 °C) and are suitable for regeneration, following multiple adsorption/desorption cycles. Overall, we demonstrate porous SP carbon systems of low cost (precursor, fabrication, and processing) and superior activity (gas sorption and capture).

12.
ACS Appl Polym Mater ; 3(11): 5536-5546, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34796333

RESUMO

Flexible and easy-to-use microfluidic systems are suitable options for point-of-care diagnostics. Here, we investigate liquid transport in fluidic channels produced by stencil printing on flexible substrates as a reproducible and scalable option for diagnostics and paper-based sensing. Optimal printability and flow profiles were obtained by combining minerals with cellulose fibrils of two different characteristic dimensions, in the nano- and microscales, forming channels with ideal wettability. Biomolecular ligands were easily added by inkjet printing on the channels, which were tested for the simultaneous detection of glucose and proteins. Accurate determination of clinically relevant concentrations was possible from linear calibration, confirming the potential of the introduced paper-based diagnostics. The results indicate the promise of simple but reliable fluidic channels for drug and chemical analyses, chromatographic separation, and quality control.

13.
ACS Appl Polym Mater ; 3(5): 2393-2401, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34308357

RESUMO

We studied the surface and microstructure of cellulose acetate (CA) films to tailor their barrier and mechanical properties for application in electrochromic devices (ECDs). Cross-linking of CA was carried out with pyromellitic dianhydride to enhance the properties relative to unmodified CA: solvent resistance (by 43% in acetone and 37% in DMSO), strength (by 91% for tensile at break), and barrier (by 65% to oxygen and 92% to water vapor). Surface modification via tetraethyl orthosilicate and octyltrichlorosilane endowed the films with hydrophobicity, stiffness, and further enhanced solvent resistance. A detailed comparison of structural, chemical, surface, and thermal properties was performed by using X-ray diffraction, dynamic mechanical analyses, Fourier-transform infrared spectroscopy, and atomic force microscopy. Coplanar ECDs were synthesized by incorporating a hydrogel electrolyte comprising TEMPO-oxidized cellulose nanofibrils and an ionic liquid. When applied as the top layer in the ECDs, cross-linked and hydrophobized CA films extended the functionality of the assembled displays. The results indicate excellent prospects for CA films in achieving environmental-friendly ECDs that can replace poly(ethylene terephthalate)-based counterparts.

14.
ChemSusChem ; 14(4): 1016-1036, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33285039

RESUMO

Sugar-based biorefineries have faced significant economic challenges. Biorefinery lignins are often classified as low-value products (fuel or low-cost chemical feedstock) mainly due to low lignin purities in the crude material. However, recent research has shown that biorefinery lignins have a great chance of being successfully used as high-value products, which in turn should result in an economy renaissance of the whole biorefinery idea. This critical review summarizes recent developments from our groups, along with the state-of-the-art in the valorization of technical lignins, with the focus on biorefinery lignins. A beneficial synergistic effect of lignin and cellulose mixtures used in different applications (wood adhesives, carbon fiber and nanofibers, thermoplastics) has been demonstrated. This phenomenon causes crude biorefinery lignins, which contain a significant amount of residual crystalline cellulose, to perform superior to high-purity lignins in certain applications. Where previously specific applications required high-purity and/or functionalized lignins with narrow molecular weight distributions, simple green processes for upgrading crude biorefinery lignin are suggested here as an alternative. These approaches can be easily combined with lignin micro-/nanoparticles (LMNP) production. The processes should also be cost-efficient compared to traditional lignin modifications. Biorefinery processes allow much greater flexibility in optimizing the lignin characteristics desirable for specific applications than traditional pulping processes. Such lignin engineering, at the same time, requires an efficient strategy capable of handling large datasets to find correlations between process variables, lignin structures and properties and finally their performance in different applications.

15.
ACS Appl Mater Interfaces ; 12(32): 36437-36448, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32672936

RESUMO

TEMPO-oxidized cellulose nanofibrils (TOCNF) and oxidized carbon nanotubes (CNT) were used as humidity-responsive films and evaluated using electroacoustic admittance (quartz crystal microbalance with impedance monitoring, QCM-I) and electrical resistivity. Water uptake and swelling phenomena were investigated in a range of relative humidity (% RH) between 30 and 60% and temperatures between 25 and 50 °C. The presence of CNT endowed fibril networks with high water accessibility, enabling fast and sensitive response to changes in humidity, with mass gains of up to 20%. The TOCNF-based sensors became viscoelastic upon water uptake, as quantified by the Martin-Granstaff model. Sensing elements were supported on glass and paper substrates and confirmed a wide window of operation in terms of cyclic % RH, bending, adhesion, and durability. The electrical resistance of the supported films increased by ∼15% with changes in % RH from 20 to 60%. The proposed system offers a great potential to monitor changes in smart packaging.

16.
RSC Adv ; 10(49): 29450-29459, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35521134

RESUMO

Partially deacetylated chitin nanofibers (ChNF) were isolated from shell residues derived from crab biomass and used to prepare hydrogels, which were easily transformed into continuous microfibers by wet-spinning. We investigated the effect of ChNF solid content, extrusion rate and coagulant type, which included organic (acetone) and alkaline (NaOH and ammonia) solutions, on wet spinning. The properties of the microfibers and associated phenomena were assessed by tensile strength, quartz crystal microgravimetry, dynamic vapor sorption (DVS), thermogravimetric analysis and wide-angle X-ray scattering (WAXS). The as-spun microfibers (14 GPa stiffness) comprised hierarchical structures with fibrils aligned in the lateral direction. The microfibers exhibited a remarkable water sorption capacity (up to 22 g g-1), while being stable in the wet state (50% of dry strength), which warrants consideration as biobased absorbent systems. In addition, according to cell proliferation and viability of rat cardiac myoblast H9c2 and mouse bone osteoblast K7M2, the wet-spun ChNF microfibers showed excellent results and can be considered as fully safe for biomedical uses, such as in sutures, wound healing patches and cell culturing.

17.
ACS Sustain Chem Eng ; 8(23): 8549-8561, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33282568

RESUMO

The growing adoption of biobased materials for electronic, energy conversion, and storage devices has relied on high-grade or refined cellulosic compositions. Herein, lignocellulose nanofibrils (LCNF), obtained from simple mechanical fibrillation of wood, are proposed as a source of continuous carbon microfibers obtained by wet spinning followed by single-step carbonization at 900 °C. The high lignin content of LCNF (∼28% based on dry mass), similar to that of the original wood, allowed the synthesis of carbon microfibers with a high carbon yield (29%) and electrical conductivity (66 S cm-1). The incorporation of anionic cellulose nanofibrils (TOCNF) enhanced the spinnability and the porous morphology of the carbon microfibers, making them suitable platforms for electrochemical double layer capacitance (EDLC). The increased loading of LCNF in the spinning dope resulted in carbon microfibers of enhanced carbon yield and conductivity. Meanwhile, TOCNF influenced the pore evolution and specific surface area after carbonization, which significantly improved the electrochemical double layer capacitance. When the carbon microfibers were directly applied as fiber-shaped supercapacitors (25 F cm-3), they displayed a remarkably long-term electrochemical stability (>93% of the initial capacitance after 10 000 cycles). Solid-state symmetric fiber supercapacitors were assembled using a PVA/H2SO4 gel electrolyte and resulted in an energy and power density of 0.25 mW h cm-3 and 65.1 mW cm-3, respectively. Overall, the results indicate a green and facile route to convert wood into carbon microfibers suitable for integration in wearables and energy storage devices and for potential applications in the field of bioelectronics.

18.
Sci Rep ; 9(1): 16691, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723231

RESUMO

Coagulation is a critical process in the assembly of cellulose nanofibrils into filaments by wet spinning; however, so far, the role of the coagulation solvent has not been systematically elucidated in this context. This work considers organic non-solvents (ethanol, acetone) and aqueous electrolyte solutions (NaCl(aq), HCl(aq), CaCl2(aq)) for the coagulation of negatively charged cellulose nanofibrils via wet spinning. The associated mechanisms of coagulation with such non-solvents resulted in different spinnability, coagulation and drying time. The properties of the achieved filaments varied depending strongly on the coagulant used: filaments obtained from electrolytes (using Ca2+ and H+ as counterions) demonstrated better water/moisture stability and thermomechanical properties. In contrast, the filaments formed from organic non-solvents (with Na+ as counterions) showed high moisture sorption and low hornification when subjected to cycles of high and low humidity (dynamic vapor sorption experiments) and swelled extensively upon immersion in water. Our observations highlight the critical role of counter-ions and non-solvents in filament formation and performance. Some of the fundamental aspects are further revealed by using quartz crystal microgravimetry with model films of nanocelluloses subjected to the respective solvent exchange.

19.
Data Brief ; 25: 104353, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31463348

RESUMO

The dataset presented here are collected for tailoring biochars from pinecone biomass through chemical modification for the adsorption of natural organic matter (NOM) from lake water. The data includes schematics, figures and tables. The characterization of biomass and tailored biochars by Brunauer, Emmett and Teller surface area measurement (BET), thermogravimetric analysis (TGA), energy dispersive X-ray (EDX) along with the adsorption of NOM from lake water by the tailored bichars and the desorption using alkaline solution are provided. This is complimentary dataset for the experimental set-up and data gathered related to the article [1] on biochar fabrication and lake water treatment. See this article [1] for further information and discussion.

20.
ACS Sustain Chem Eng ; 7(6): 6013-6022, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30931178

RESUMO

We introduce an eco-friendly process to dramatically simplify carbon microfiber fabrication from biobased materials. The microfibers are first produced by wet-spinning in aqueous calcium chloride solution, which provides rapid coagulation of the hydrogel precursors comprising wood-derived lignin and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (TOCNF). The thermomechanical performance of the obtained lignin/TOCNF filaments is investigated as a function of cellulose nanofibril orientation (wide angle X-ray scattering (WAXS)), morphology (scanning electron microscopy (SEM)), and density. Following direct carbonization of the filaments at 900 °C, carbon microfibers (CMFs) are obtained with remarkably high yield, up to 41%, at lignin loadings of 70 wt % in the precursor microfibers (compared to 23% yield for those produced in the absence of lignin). Without any thermal stabilization or graphitization steps, the morphology, strength, and flexibility of the CMFs are retained to a large degree compared to those of the respective precursors. The electrical conductivity of the CMFs reach values as high as 103 S cm-1, making them suitable for microelectrodes, fiber-shaped supercapacitors, and wearable electronics. Overall, the cellulose nanofibrils act as structural elements for fast, inexpensive, and environmentally sound wet-spinning while lignin endows CMFs with high carbon yield and electrical conductivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA