Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell ; 82(13): 2458-2471.e9, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35550257

RESUMO

Many cancers are characterized by gene fusions encoding oncogenic chimeric transcription factors (TFs) such as EWS::FLI1 in Ewing sarcoma (EwS). Here, we find that EWS::FLI1 induces the robust expression of a specific set of novel spliced and polyadenylated transcripts within otherwise transcriptionally silent regions of the genome. These neogenes (NGs) are virtually undetectable in large collections of normal tissues or non-EwS tumors and can be silenced by CRISPR interference at regulatory EWS::FLI1-bound microsatellites. Ribosome profiling and proteomics further show that some NGs are translated into highly EwS-specific peptides. More generally, we show that hundreds of NGs can be detected in diverse cancers characterized by chimeric TFs. Altogether, this study identifies the transcription, processing, and translation of novel, specific, highly expressed multi-exonic transcripts from otherwise silent regions of the genome as a new activity of aberrant TFs in cancer.


Assuntos
Carcinogênese , Regulação Neoplásica da Expressão Gênica , Proteínas de Fusão Oncogênica , Proteína Proto-Oncogênica c-fli-1 , Fatores de Transcrição , Carcinogênese/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Genoma/genética , Genômica , Humanos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Oncogenes/genética , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia , Fatores de Transcrição/genética , Transcrição Gênica/genética
2.
Biophys J ; 120(13): 2644-2656, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34087211

RESUMO

The leukocyte-specific ß2-integrin LFA-1 and its ligand ICAM-1, expressed on endothelial cells (ECs), are involved in the arrest, adhesion, and transendothelial migration of leukocytes. Although the role of mechanical forces on LFA-1 activation is well established, the impact of forces on its major ligand ICAM-1 has received less attention. Using a parallel-plate flow chamber combined with confocal and super-resolution microscopy, we show that prolonged shear flow induces global translocation of ICAM-1 on ECs upstream of flow direction. Interestingly, shear forces caused actin rearrangements and promoted actin-dependent ICAM-1 nanoclustering before LFA-1 engagement. T cells adhered to mechanically prestimulated ECs or nanoclustered ICAM-1 substrates developed a promigratory phenotype, migrated faster, and exhibited shorter-lived interactions with ECs than when adhered to non mechanically stimulated ECs or to monomeric ICAM-1 substrates. Together, our results indicate that shear forces increase ICAM-1/LFA-1 bonds because of ICAM-1 nanoclustering, strengthening adhesion and allowing cells to exert higher traction forces required for faster migration. Our data also underscore the importance of mechanical forces regulating the nanoscale organization of membrane receptors and their contribution to cell adhesion regulation.


Assuntos
Células Endoteliais , Molécula 1 de Adesão Intercelular , Adesão Celular , Movimento Celular , Antígeno-1 Associado à Função Linfocitária
3.
Biophys J ; 115(4): 725-736, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30037496

RESUMO

Standard fluorescence microscopy relies on filter-based detection of emitted photons after fluorophore excitation at the appropriate wavelength. Although of enormous utility to the biological community, the implementation of approaches for simultaneous multicolor fluorescence imaging is commonly challenged by the large spectral overlap between different fluorophores. Here, we describe an alternative multicolor fluorescence imaging methodology that exclusively relies on the absorption spectra of the fluorophores instead of their fluorescence emissions. The method is based on multiplexing optical excitation signals in the frequency domain and using single color-blind detection. Because the spectral information is fully encoded during excitation, the method requires minimal spectral filtering on detection. This enables the simultaneous identification of multiple color channels in a single measurement with only one color-blind detector. We demonstrate simultaneous three-color confocal imaging of individual molecules and of four-target imaging on cells with excellent discrimination. Moreover, we have implemented a non-negative matrix factorization algorithm for spectral unmixing to extend the number of color targets that can be discriminated in a single measurement. Using this algorithm, we resolve six spectrally and spatially overlapping fluorophores on fixed cells using four excitation wavelengths. The methodology is fully compatible with live imaging of biological samples and can be easily extended to other imaging modalities, including super-resolution microscopy, making simultaneous multicolor imaging more accessible to the biological research community.


Assuntos
Microscopia de Fluorescência , Fótons , Cor , Processamento de Imagem Assistida por Computador
4.
Nano Lett ; 17(10): 6295-6302, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28926278

RESUMO

Optical nanoantennas can efficiently confine light into nanoscopic hotspots, enabling single-molecule detection sensitivity at biological relevant conditions. This innovative approach to breach the diffraction limit offers a versatile platform to investigate the dynamics of individual biomolecules in living cell membranes and their partitioning into cholesterol-dependent lipid nanodomains. Here, we present optical nanoantenna arrays with accessible surface hotspots to study the characteristic diffusion dynamics of phosphoethanolamine (PE) and sphingomyelin (SM) in the plasma membrane of living cells at the nanoscale. Fluorescence burst analysis and fluorescence correlation spectroscopy performed on nanoantennas of different gap sizes show that, unlike PE, SM is transiently trapped in cholesterol-enriched nanodomains of 10 nm diameter with short characteristic times around 100 µs. The removal of cholesterol led to the free diffusion of SM, consistent with the dispersion of nanodomains. Our results are consistent with the existence of highly transient and fluctuating nanoscale assemblies enriched by cholesterol and sphingolipids in living cell membranes, also known as lipid rafts. Quantitative data on sphingolipids partitioning into lipid rafts is crucial to understand the spatiotemporal heterogeneous organization of transient molecular complexes on the membrane of living cells at the nanoscale. The proposed technique is fully biocompatible and thus provides various opportunities for biophysics and live cell research to reveal details that remain hidden in confocal diffraction-limited measurements.


Assuntos
Membrana Celular/química , Colesterol/análise , Etanolaminas/análise , Microdomínios da Membrana/química , Espectrometria de Fluorescência/métodos , Esfingomielinas/análise , Animais , Células CHO , Cricetulus , Difusão
5.
J Biol Chem ; 291(40): 21053-21062, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27481944

RESUMO

Chemokine stimulation of integrin α4ß1-dependent T lymphocyte adhesion is a key step during lymphocyte trafficking. A central question regarding α4ß1 function is how its lateral mobility and organization influence its affinity and avidity following cell stimulation with chemokines and/or ligands. Using single particle tracking and superresolution imaging approaches, we explored the lateral mobility and spatial arrangement of individual α4ß1integrins on T cells exposed to different activating stimuli. We show that CXCL12 stimulation leads to rapid and transient α4ß1activation, measured by induction of the activation epitope recognized by the HUTS-21 anti-ß1antibody and by increased talin-ß1 association. CXCL12-dependent α4ß1 activation directly correlated with restricted lateral diffusion and integrin immobilization. Moreover, co-stimulation by CXCL12 together with soluble VCAM-1 potentiated integrin immobilization with a 5-fold increase in immobile integrins compared with unstimulated conditions. Our data indicate that docking by talin of the chemokine-activated α4ß1 to the actin cytoskeleton favors integrin immobilization, which likely facilitates ligand interaction and increased adhesiveness. Superresolution imaging showed that the nanoscale organization of high-affinity α4ß1 remains unaffected following chemokine and/or ligand addition. Instead, newly activated α4ß1 integrins organize on the cell membrane as independent units without joining pre-established integrin sites to contribute to cluster formation. Altogether, our results provide a rationale to understand how the spatiotemporal organization of activated α4ß1 integrins regulates T lymphocyte adhesion.


Assuntos
Quimiocina CXCL12/metabolismo , Integrina alfa4beta1/metabolismo , Linfócitos T/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Adesão Celular/fisiologia , Linhagem Celular , Integrina alfa4beta1/genética , Transporte Proteico/fisiologia , Talina/genética , Talina/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética
6.
Elife ; 122023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36940134

RESUMO

The immunoglobulin-like lectin receptor CD169 (Siglec-1) mediates the capture of HIV-1 by activated dendritic cells (DCs) through binding to sialylated ligands. These interactions result in a more efficient virus capture as compared to resting DCs, although the underlying mechanisms are poorly understood. Using a combination of super-resolution microscopy, single-particle tracking and biochemical perturbations we studied the nanoscale organization of Siglec-1 on activated DCs and its impact on viral capture and its trafficking to a single viral-containing compartment. We found that activation of DCs leads to Siglec-1 basal nanoclustering at specific plasma membrane regions where receptor diffusion is constrained by Rho-ROCK activation and formin-dependent actin polymerization. Using liposomes with varying ganglioside concentrations, we further demonstrate that Siglec-1 nanoclustering enhances the receptor avidity to limiting concentrations of gangliosides carrying sialic ligands. Binding to either HIV-1 particles or ganglioside-bearing liposomes lead to enhanced Siglec-1 nanoclustering and global actin rearrangements characterized by a drop in RhoA activity, facilitating the final accumulation of viral particles in a single sac-like compartment. Overall, our work provides new insights on the role of the actin machinery of activated DCs in regulating the formation of basal Siglec-1 nanoclustering, being decisive for the capture and actin-dependent trafficking of HIV-1 into the virus-containing compartment.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Células Dendríticas/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , HIV-1/fisiologia , Actinas/metabolismo , Lipossomos/metabolismo , Ligantes , Gangliosídeos/metabolismo
7.
Adv Mater ; : e1801317, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29974518

RESUMO

Nanomaterials with very low atomicity deserve consideration as potential pharmacological agents owing to their very small size and to their properties that can be precisely tuned with minor modifications to their size. Here, it is shown that silver clusters of three atoms (Ag3 -AQCs)-developed by an ad hoc method-augment chromatin accessibility. This effect only occurs during DNA replication. Coadministration of Ag3 -AQCs increases the cytotoxic effect of DNA-acting drugs on human lung carcinoma cells. In mice with orthotopic lung tumors, the coadministration of Ag3 -AQCs increases the amount of cisplatin (CDDP) bound to the tumor DNA by fivefold without modifying CDDP levels in normal tissues. As a result, CDDP coadministered with Ag3 -AQCs more strongly reduces the tumor burden. Evidence of the significance of targeting chromatin compaction to increase the therapeutic index of chemotherapy is now provided.

8.
J Leukoc Biol ; 102(3): 881-895, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28630103

RESUMO

Dendritic cells (DCs) are APCs essential in regulating the immune response. PGE2, produced during inflammation, has a pivotal role in the maturation of DCs and, therefore, is vital for the immune response. The large variety of biologic functions governed by PGE2 is mediated by its signaling through 4 distinct E-type prostanoid (EP) receptors. Immunogenic DCs express EP2 and EP4, which mediate the PGE2 signaling. However, the expression and function of EP receptors in human tolerogenic DCs (tol-DCs), which present an inhibitory phenotype, have not yet, to our knowledge, been assessed. To clarify the role of EP receptors in tol-DCs, we examined the expression of different EP receptors and their effect using selective agonists in human cells. We find that EP2 and EP3 expression are up-regulated in in vitro-generated tol-DCs compared with mature DCs (mDCs). Activation of EP2-EP4 has a direct effect on the surface expression of costimulatory molecules and maturation receptors, such as CD80, CD83, and CD86 or MHCII and CCR7 in tol-DCs, the latter being exclusively modulated by PGE2-EP4 signaling. Importantly, we find that EP2 and EP3 receptors are involved in tolerance induction through IL-10 production by tol-DCs. These results are in sharp contrast with the inflammatory role of EP4 Moreover, we show that DCs generated in the presence of agonists for EP receptors, induce naive T cell differentiation toward polarized Th1/Th17 cells. Given the differential effects of EP receptors, our results suggest that EP receptor agonist/antagonists might become relevant novel drug templates to modulate immune response.


Assuntos
Células Dendríticas/imunologia , Dinoprostona/farmacologia , Tolerância Imunológica/efeitos dos fármacos , Imunossupressores/farmacologia , Receptores de Prostaglandina E Subtipo EP2/imunologia , Receptores de Prostaglandina E Subtipo EP3/imunologia , Antígenos CD/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Interleucina-10/imunologia , Receptores CCR7/imunologia , Células Th1/imunologia , Células Th17/imunologia
9.
PLoS One ; 9(6): e99589, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24945611

RESUMO

LFA-1 is a leukocyte specific ß2 integrin that plays a major role in regulating adhesion and migration of different immune cells. Recent data suggest that LFA-1 on mature dendritic cells (mDCs) may function as a chemokine-inducible anchor during homing of DCs through the afferent lymphatics into the lymph nodes, by transiently switching its molecular conformational state. However, the role of LFA-1 mobility in this process is not yet known, despite that the importance of lateral organization and dynamics for LFA-1-mediated adhesion regulation is broadly recognized. Using single particle tracking approaches we here show that LFA-1 exhibits higher mobility on resting mDCs compared to monocytes. Lymphoid chemokine CCL21 stimulation of the LFA-1 high affinity state on mDCs, led to a significant reduction of mobility and an increase on the fraction of stationary receptors, consistent with re-activation of the receptor. Addition of soluble monomeric ICAM-1 in the presence of CCL21 did not alter the diffusion profile of LFA-1 while soluble ICAM-1 nano-aggregates in the presence of CCL21 further reduced LFA-1 mobility and readily bound to the receptor. Overall, our results emphasize the importance of LFA-1 lateral mobility across the membrane on the regulation of integrin activation and its function as adhesion receptor. Importantly, our data show that chemokines alone are not sufficient to trigger the high affinity state of the integrin based on the strict definition that affinity refers to the adhesion capacity of a single receptor to its ligand in solution. Instead our data indicate that nanoclustering of the receptor, induced by multi-ligand binding, is required to maintain stable cell adhesion once LFA-1 high affinity state is transiently triggered by inside-out signals.


Assuntos
Quimiocina CCL21/metabolismo , Células Dendríticas/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Monócitos/metabolismo , Quimiocina CCL21/genética , Quimiocina CCL21/farmacologia , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/farmacologia , Ligantes , Antígeno-1 Associado à Função Linfocitária/genética , Monócitos/citologia , Monócitos/efeitos dos fármacos , Cultura Primária de Células , Agregados Proteicos , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA