Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 128: 1012-22, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23895913

RESUMO

Wetland management usually aims at preserving or restoring desirable ecological characteristics or functions. It is now well-recognized that some social criteria should also be included. Involving lay-people in wetland preservation or restoration projects may mean broadening project objectives to fit various and potentially competing requirements that relate to ecology, aesthetics, recreation, etc. In addition, perceived value depends both upon expertise and objectives, both of which vary from one stakeholder population to another. Perceived value and ecological functioning have to be reconciled in order to make a project successful. Understanding the perceptions of lay-people as well as their opinions about ecological value is a critical part of the development of sustainable management plans. Characterizing the environment in a way that adequately describes ecological function while also being consistent with lay perception may help reach such objectives. This goal has been addressed in a case study relating to wetlands of the Ain River (France). A photo-questionnaire presenting a sample of photographs of riverine wetlands distributed along the Ain River was submitted to 403 lay-people and self-identified experts. Two objectives were defined: (1) to identify the different parameters, whether visual or ecological, influencing the perception regarding the value of these ecosystems; (2) to compare the perceptions of self-identified experts and lay-people. Four criteria appear to strongly influence peoples' perceptions of ecological and aesthetical values: water transparency and colour, the presence and appearance of aquatic vegetation, the presence of sediments, and finally, trophic status. In our study, we observed only a few differences in perception. The differences primarily related to the value assigned to oligotrophic wetlands but even here, the differences between lay and expert populations were minimal. These results support the idea that it is possible to implement an integrated and participative management program for ecosystems. Our approach can provide a shared view of environmental value facilitating the work of managers in defining comprehensive goals for wetland preservation or restoration projects.


Assuntos
Ecossistema , Estética , Opinião Pública , Áreas Alagadas , Emoções , Prova Pericial , França , Humanos , Recreação , Inquéritos e Questionários
2.
Sci Total Environ ; 834: 155353, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35460768

RESUMO

The release and spread of opportunistic pathogens - some of which are resistant to antibiotics - in the environment is a major public health challenge worldwide. In this study, we found evidence of the origin of such microorganisms and characterized their dispersal and survival in floodplain ecosystems to understand their fate in the environment. We determined the concentrations of Escherichia coli, extended-spectrum ß-lactamases (ESBL)-producing E. coli, Klebsiella pneumoniae, ESBL-producing K. pneumoniae, and Pseudomonas aeruginosa in a floodplain of Eastern France using a culture-based method. Furthermore, we assessed the population structure of E. coli isolates by quadruplex PCR, their plasmid replicon content by PCR-based replicon typing, and the nature of their blaESBL genes by PCR and sequencing. The main aquatic ecosystems of the floodplain (river, tributaries, riverine wetlands, and groundwater) were sampled monthly over a one-year cycle. The majority of E. coli isolates retrieved in the studied floodplain were likely of human origin. Moreover, contamination of floodplain aquatic ecosystems by opportunistic pathogens mainly resulted from hydrological fluxes during high-flow periods, suggesting that dispersal and dilution predominated. During low-flow periods, E. coli may be able to survive for several months in isolated ecosystems in which it may find favourable conditions to thrive. The most nutrient-rich and isolated wetlands are consequently potential pathogen reservoirs. The production of ESBL was not a disadvantage for E. coli in low-anthropized floodplain ecosystems.


Assuntos
Infecções por Escherichia coli , Infecções por Klebsiella , Antibacterianos , Ecossistema , Escherichia coli , Infecções por Escherichia coli/epidemiologia , Humanos , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , beta-Lactamases/genética
3.
New Phytol ; 191(4): 1141-1149, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21585390

RESUMO

External mechanical forces resulting from the pressure exerted by wind or water movement are a major stress factor for plants and may cause regular disturbances in many ecosystems. A plant's ability to resist these forces relies either on minimizing the forces encountered by the plant (avoidance strategy), or on maximizing its resistance to breakage (tolerance strategy). We investigated plant resistance strategies using aquatic vegetation as a model, and examined whether avoidance and tolerance are negatively correlated. We tested the avoidance-tolerance correlation across 28 species using a phylogenetically corrected analysis, after construction of a molecular phylogeny for the species considered. Different species demonstrated contrasting avoidance and tolerance and we demonstrated a significant negative relationship between the two strategies, which suggests an avoidance-tolerance trade-off. Negative relationships may result from costs that each strategy incurs or from constraints imposed by physical laws on plant tissues. The existence of such a trade-off has important ecological and evolutionary consequences. It would lead to constraints on the evolution and variation of both strategies, possibly limiting their evolution and may constrain many morphological, anatomical and architectural traits that underlie avoidance and tolerance.


Assuntos
Adaptação Fisiológica , Plantas/genética , Estresse Mecânico , Hidrodinâmica , Modelos Lineares , Filogenia , Desenvolvimento Vegetal , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Caules de Planta/anatomia & histologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Plantas/anatomia & histologia , Especificidade da Espécie
4.
Antibiotics (Basel) ; 9(6)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570743

RESUMO

The contamination of surface water by pathogenic bacteria of human origin is an important public health issue. Wetlands can be contaminated with fecal bacteria by water originating from different sources, such as wastewater treatment plants and agriculture. Escherichia coli is a commensal of the human gut flora and the major indication of fecal contamination in surface water. Little is known about the association between fecal bacteria and submerged macrophytes and how this may influence the water quality. We questioned whether macrophytes enhance or inhibit the bacterial growth in wetlands. For this purpose, we grew four different species of macrophytes (Mentha aquatica, Baldellia ranunculoides, Sparganium emersum and Elodea canadensis, in mono- or multispecies cultures) in aquatic rhizotrons and inoculated the devices with a fluorescent strain of Escherichia coli (producing a green fluorescent protein) to simulate the fecal contamination of wetlands. Bacterial survival was monitored by measuring the fluorescence for 19 days. We found (i) that contaminated sediments did not release E. coli in the water column in lentic conditions and (ii) that monocultures of E. canadensis, M. aquatica and S. emersum reduced the E. coli concentration in the water column. This suggests that aquatic plant species may be used in constructed wetlands to clear surface freshwater from bacteria of fecal origin.

5.
Front Microbiol ; 11: 552566, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013784

RESUMO

Escherichia coli that are present in the rivers are mostly brought by human and animal feces. Contamination occurs mostly through wastewater treatment plant (WWTP) outflows and field amendment with sewage sludge or manure. However, the survival of these isolates in river-associated wetlands remains unknown. Here, we assessed E. coli population structure in low-anthropized wetlands located along three floodplains to identify the major source of contamination of wetlands, whose functioning is different from the rivers. We retrieved 179 E. coli in water samples collected monthly from 19 sites located in eastern France over 1 year. Phylogroups B1 and B2 were dominant in the E. coli population, while phylogroup A was dominant in isolates resistant to third-generation cephalosporins, which harbored the extended-spectrum ß-lactamase (ESBL) encoding genes bla CTX-M-15 and bla CTX-M-27 in half of the cases. The high proportion of isolates from human source can be attributed to WWTP outflows and the spread of sewage sludge. We analyzed the distribution of the isolates belonging to the most human-associated phylogroups (B2 and D) on a phylogenetic tree of the whole species and compared it with that of isolates retrieved from patients and from WWTP outflows. The distribution of the three E. coli populations was similar, suggesting the absence of a specific population in the environment. Our results suggest that a high proportion of E. coli isolates that reach and survive in low-anthropized environments such as wetlands are from human source. To the best of our knowledge, this is the first study assessing E. coli contamination and resistance genes in natural freshwater wetlands.

6.
PLoS Negl Trop Dis ; 14(8): e0008406, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32776919

RESUMO

We hypothesized that Cholera (Vibrio cholerae) that appeared along Lake Kivu in the African Rift in the seventies, might be controlled by volcano-tectonic activity, which, by increasing surface water and groundwater salinity and temperature, may partly rule the water characteristics of Lake Kivu and promote V. cholerae proliferation. Volcanic activity (assessed weekly by the SO2 flux of Nyiragongo volcano plume over the 2007-2012 period) is highly positively correlated with the water conductivity, salinity and temperature of the Kivu lake. Over the 2007-2012 period, these three parameters were highly positively correlated with the temporal dynamics of cholera cases in the Katana health zone that border the lake. Meteorological variables (air temperature and rainfall), and the other water characteristics (namely pH and dissolved oxygen concentration in lake water) were unrelated to cholera dynamics over the same period. Over the 2016-2018 period, we sampled weekly lake water salinity and conductivity, and twice a month vibrio occurrence in lake water and fish. The abundance of V. cholerae in the lake was positively correlated with lake salinity, temperature, and the number of cholera cases in the population of the Katana health zone. V. cholerae abundance in fishes was positively correlated with V. cholerae abundance in lake water, suggesting that their consumption directly contaminate humans. The activity of the volcano, by controlling the physico-chemical characteristics of Lake Kivu, is therefore a major determinant of the presence of the bacillus in the lake. SO2 fluxes in the volcano plume can be used as a tool to predict epidemic risks.


Assuntos
Cólera/epidemiologia , Lagos/química , Lagos/microbiologia , Erupções Vulcânicas/efeitos adversos , Animais , República Democrática do Congo/epidemiologia , Condutividade Elétrica , Peixes/microbiologia , Humanos , Concentração de Íons de Hidrogênio , Oxigênio/análise , Ruanda , Salinidade , Dióxido de Enxofre/análise , Temperatura , Vibrio , Microbiologia da Água
7.
PeerJ ; 7: e7861, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31637127

RESUMO

Little attention has been paid to how aquatic habitat characteristics affect the traits of plant species. Nuphar lutea (L.) Sm. is a keystone species distributed across temperate regions of Europe, northwest Africa and western Asia. Its apparently low phenotypic variability compared to other aquatic plants led us to test whether the species exhibited significant phenotypic variability and whether trait values correlated to environmental parameters. The hypotheses were that (1) the environmental variation within our set of wetlands (both water and sediment characteristics) led to significant variation among four sets of traits related respectively to growth, reproduction, defence and storage and (2) that nutrient limitation (nitrogen and especially phosphorus) should affect plant traits towards a higher investment in storage and defence and a lower investment in growth and reproduction, thereby negatively affecting the success of N. lutea. To test these hypotheses, 11 populations of N. lutea were sampled in wetlands differing in physicochemical characteristics and spread along three rivers. A total of 15 traits, grouped into four sets (growth, reproduction, storage and defence), were measured during the growing season. Most N. lutea traits were related to the environmental characteristics of wetlands. The growth and reproduction traits were mostly positively related to habitat resource conditions, whereas the defence traits were positively correlated with both ammonium concentration and temperature, outlining possible anoxic stress (habitat adversity). Nitrogen or phosphorus limitation led to the variation of only a few traits: the rhizome starch content was higher in phosphorus-limited wetlands, while the rhizome length and volume, and the number of flowers were higher in nitrogen-limited wetlands.

8.
FEMS Microbiol Ecol ; 95(8)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31234204

RESUMO

The survival and multiplication of human pathogenic and antibiotic-resistant bacteria in ecosystems is of increasing concern but has been little explored. Wetlands can be contaminated by water fluxes from rivers and may present environmental conditions leading to bacterial survival and multiplication. To test this hypothesis, we sampled 16 wetlands located along three rivers of the Jura Massif, France. The bacterial contamination of the wetland and river waters was measured monthly over a one-year cycle together with the water physico-chemical characteristics. We assessed the abundance of three pathogenic species: Escherichia coli,Klebsiella pneumoniaeand Pseudomonas aeruginosa. The concentrations of E. coli producing extended-spectrum ß-lactamase (ESBL E. coli) or belonging to the phylogenetic group B2 (E. coli B2-more pathogenic) were also measured. We found that rivers carried total E. coli, ESBL E. coli, and K. pneumoniae to wetlands. ESBL E. coli poorly survived in wetlands, whereas total E. coli and K. pneumoniae possibly met favourable physico-chemical conditions for survival and multiplication in these habitats. K. pneumoniae peaked in summer in warm and shallow wetlands. Total E. coli and E. coli B2 potentially reached wetlands through sources other than rivers (hillslope groundwater or leaching from contaminated fields).


Assuntos
Farmacorresistência Bacteriana , Microbiologia Ambiental , Escherichia coli/isolamento & purificação , Klebsiella pneumoniae/isolamento & purificação , Áreas Alagadas , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , França , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/patogenicidade , Testes de Sensibilidade Microbiana , Rios/microbiologia
9.
Ann Bot ; 102(6): 989-96, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18854376

RESUMO

BACKGROUND AND AIMS: The plastic alterations of clonal architecture are likely to have functional consequences, as they affect the spatial distribution of ramets over patchy environments. However, little is known about the effect of mechanical stresses on the clonal growth. The aim of the present study was to investigate the clonal plasticity induced by mechanical stress consisting of continuous water current encountered by aquatic plants. More particularly, the aim was to test the capacity of the plants to escape this stress through clonal plastic responses. METHODS: The transplantation of ramets of the same clone in two contrasting flow velocity conditions was carried out for two species (Potamogeton coloratus and Mentha aquatica) which have contrasting clonal growth forms. Relative allocation to clonal growth, to creeping stems in the clonal biomass, number and total length of creeping stems, spacer length and main creeping stem direction were measured. KEY RESULTS: For P. coloratus, plants exposed to water current displayed increased total length of creeping stems, increased relative allocation to creeping stems within the clonal dry mass and increased spacer length. For M. aquatica, plants exposed to current displayed increased number and total length of creeping stems. Exposure to current induced for both species a significant increase of the proportion of creeping stems in the downstream direction to the detriment of creeping stems perpendicular to flow. CONCLUSIONS: This study demonstrates that mechanical stress from current flow induced plastic variation in clonal traits for both species. The responses of P. coloratus could lead to an escape strategy, with low benefits with respect to sheltering and anchorage. The responses of M. aquatica that may result in a denser canopy and enhancement of anchorage efficiency could lead to a resistance strategy.


Assuntos
Mentha/crescimento & desenvolvimento , Mentha/fisiologia , Potamogetonaceae/crescimento & desenvolvimento , Potamogetonaceae/fisiologia , Células Clonais , Caules de Planta/crescimento & desenvolvimento , Característica Quantitativa Herdável , Reologia , Estresse Mecânico
10.
Ann Bot ; 100(6): 1297-305, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17913725

RESUMO

BACKGROUND AND AIMS: Plant species frequently encounter multiple stresses under natural conditions, and the way they cope with these stresses is a major determinant of their ecological breadth. The way mechanical (e.g. wind, current) and resource stresses act simultaneously on plant morphological traits has been poorly addressed, even if both stresses often interact. This paper aims to assess whether hydraulic stress affects plant morphology in the same way at different nutrient levels. METHODS: An examination was made of morphological variations of an aquatic plant species growing under four hydraulic stress (flow velocity) gradients located in four habitats distributed along a nutrient gradient. Morphological traits covering plant size, dry mass allocation, organ water content and foliage architecture were measured. KEY RESULTS: Significant interactive effects of flow velocity and nutrient level were observed for all morphological traits. In particular, increased flow velocity resulted in size reductions under low nutrient conditions, suggesting an adaptive response to flow stress (escape strategy). On the other hand, moderate increases in flow velocity resulted in increased size under high nutrient conditions, possibly related to an inevitable growth response to a higher nutrient supply induced by water renewal at the plant surface. For some traits (e.g. dry mass allocation), a consistent sense of variation as a result of increasing flow velocity was observed, but the amount of variation was either reduced or amplified under nutrient-rich compared with nutrient-poor conditions, depending on the traits considered. CONCLUSIONS: These results suggest that, for a given species, a stress factor may result, in contrasting patterns and hence strategies, depending on a second stress factor. Such results emphasize the relevance of studies on plant responses to multiple stresses for understanding the actual ecological breadth of species.


Assuntos
Magnoliopsida/anatomia & histologia , Magnoliopsida/crescimento & desenvolvimento , Adaptação Fisiológica , Biomassa , Magnoliopsida/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Caules de Planta/anatomia & histologia , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Estresse Mecânico , Água/metabolismo
11.
New Phytol ; 163(3): 651-660, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33873737

RESUMO

• The similarity of morphological plastic response to physical stress has been poorly tested among distant plant taxons as yet. • The effect of flow stress was compared for two species -Berula erecta and Mentha aquatica- through 14 morphological traits measured for five sets of 30 individuals in five patches organised along a natural velocity gradient. Size-dependent and size-corrected traits were analysed by single correlations and multivariate analyses. • B. erecta exhibited the expected pattern, that is a sharp decrease of all but one size-dependent trait as velocity increased. Five and four size-corrected traits were correlated with velocity, for B. erecta and M. aquatica, respectively, but three of them showed an opposite trend for the two species. Within-patch trait variability, as hypothesized, tended to decrease with velocity for B. erecta. • The two species exhibited partly opposite responses despite the involvement of common traits. Small size allowed B. erecta to escape flow stress, whereas M. aquatica acquired a more streamlined morphology. The adaptive value of these morphological adjustments should be assessed through drag measurements.

12.
Springerplus ; 3: 68, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24567877

RESUMO

Future climate changes and the resulting modifications in anthropogenic activities will alter the interactions between rivers and groundwater. The quantification of these hydraulic interactions is absolutely necessary for achieving sustainable water use and requires accurate analytical methodologies. This report proposes an interdisciplinary approach to the quantitative and qualitative characterization of hydraulic interactions between rivers and shallow aquifers, wherein it outlines the advantages of coupling groundwater modeling with biological markers. As a first step, we built independent diagnostic maps of hydrological exchanges at the sector scale on the basis of hydrogeological modeling and biological indicators. In a second step, these maps were compared to provide a quantitative and qualitative understanding of exchanges between groundwater and surface water. This comparison significantly improved the calibration of groundwater models through a better assessment of boundary zones. Our approach enabled us to identify the conditions under which it could be possible to use biological indicators instead of a large set of piezometric measures. The integration of such combined tools in a future decision support system will assist governmental authorities in proposing appropriate long-term water policies for the preservation of groundwater resources, such as for supplying potable water and/or mitigating pollution risks.

13.
FEMS Microbiol Ecol ; 85(2): 211-26, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23496074

RESUMO

In a context of global change, alterations in the water cycle may impact the structure and function of terrestrial and aquatic ecosystems. Wetlands are particularly at risk because hydrological regime has a major influence on microbially mediated biogeochemical processes in sediments. While the influence of water availability on wetland biogeochemical processes has been comprehensively studied, the influence of hydrological regime on microbial community structure has been overlooked. We tested for the effect of hydrological regime on the structure and functions of microbial communities by comparing sediments collected at multiple sites in the Ain département (Eastern France). Each site consisted of two plots, one permanently and one seasonally inundated. At the time of sampling, all plots were continuously inundated for more than 6 months but still harboured distinct bacterial communities. This change in community structure was not associated with marked modifications in the rates of microbial activities involved in the C and N cycles. These results suggest that the observed structural change could be related to bacterial taxa responding to the environmental variations associated with different hydrological regimes, but not strongly associated with the biogeochemical processes monitored here.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Áreas Alagadas , Bactérias/isolamento & purificação , França , Sedimentos Geológicos/química , Estações do Ano , Água/química , Microbiologia da Água
14.
New Phytol ; 177(4): 907-917, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18275493

RESUMO

Plastic responses of plants exposed to mechanical stress can lead to modified, performance-enhancing, morphologies, sometimes accompanied by costs to reproduction. The capacity to present short-term plastic responses to current stress, the resulting performance (expected lower mechanical forces), and the costs of such responses to reproduction were tested for four aquatic plant species. Two ramets of the same genet were submitted to running vs standing water treatment. Traits describing the morphology, hydrodynamic performance and reproduction (sexual and vegetative) were measured. For one species, plastic responses led to reduced hydrodynamic forces, without apparent costs to reproduction, indicating that the plastic response could be beneficial for plant maintenance in stressful habitats. For two species, plastic responses were not associated with variations in performance and reproduction, possibly because of the low hydrodynamic forces experienced, even for morphologies produced under standing conditions. For one species, plastic responses were associated with a sharp decrease in sexual reproduction, without variations in performance, revealing the negative impact of currents over a short time scale. Species maintenance is linked to the capacity of individuals to tolerate mechanical forces. The contrasting responses to currents may be a key element for predicting community dynamics.


Assuntos
Plantas/anatomia & histologia , Plantas/metabolismo , Água/fisiologia , Fenômenos Biomecânicos , Ecossistema , Flores/fisiologia , Reprodução/fisiologia
15.
Am J Bot ; 93(8): 1090-9, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21642174

RESUMO

Mechanical stresses from wind, current or wave action can strongly affect plant growth and survival. Survival and distribution of species often depend on the plant's capacity to adapt to such stresses, particularly when amplified by climatic variations. Few studies have dealt with plastic adjustments in response to mechanical stress compared to resource stress. We hypothesized that mechanical stress should favor plastic adjustments that result in increased biomass production in zones protected from the stress and that altered growth patterns should be reversible after mechanical stress removal. Here we measured plastic adjustments in morphological traits and clonal architecture for an aquatic clonal species (Berula erecta) under two contrasting mechanical stresses in the field-standing vs. running water. Reversion of the morphological changes was then assessed using transplants in standing water. In the case of mechanical stress, size reduction, biomass reallocation within clones (higher allocations to clonal growth and to belowground organs), and a more compact growth form (reduced spacer lengths) contributed to reducing the damage risk. The removal of mechanical stress induced compensatory growth, probably linked to the production of low density tissues. However, most patterns of dry mass partitioning induced by current stress were not reversed after stress removal.

16.
J Exp Bot ; 56(412): 777-86, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15642713

RESUMO

Sessile organisms often exhibit morphological changes in response to permanent exposure to mechanical stimulation (wind or water movements). The adaptive value of these morphological changes (hydrodynamic performance and consequences on fitness) has not been studied extensively, particularly for higher plants submitted to flow stress. The aim was to determine the adaptive value of morphological patterns observed within two higher aquatic plant species, Berula erecta and Mentha aquatica, growing along a natural flow stress gradient. The hydrodynamic ability of each ramet was investigated through quantitative variables (drag coefficient and E-value). Fitness-related traits based on vegetative growth and clonal multiplication were assessed for each individual. For both species, the drag coefficient and the E-value were explained only to a limited extent by the morphological traits used. B. erecta exhibited a reduction in size and low overall plant drag at higher flow velocities, despite high drag values relative to leaf area, due to a low flexibility. The plants maintained their fitness, at least in part, through biomass reallocation: one tall ramet at low velocity, but shorter individuals with many interconnected stolons when flow velocity increased. For M. aquatica, morphological differences along the velocity gradient did not lead to greater hydrodynamic performance. Plant size increased with increasing velocities, suggesting the indirect effects of current favouring growth in high velocities. The fitness-related traits did not demonstrate lower plant fitness for high velocities. Different developmental constraints linked to plant morphology and trade-offs between major plant functions probably lead to different plant responses to flow stress.


Assuntos
Adaptação Fisiológica , Apiaceae/fisiologia , Lamiaceae/fisiologia , Apiaceae/anatomia & histologia , Fenômenos Biomecânicos , Meio Ambiente , Lamiaceae/anatomia & histologia , Rios , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA