Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Genet ; 19(6): e1010781, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37267426

RESUMO

Four SIX homeoproteins display a combinatorial expression throughout embryonic developmental myogenesis and they modulate the expression of the myogenic regulatory factors. Here, we provide a deep characterization of their role in distinct mouse developmental territories. We showed, at the hypaxial level, that the Six1:Six4 double knockout (dKO) somitic precursor cells adopt a smooth muscle fate and lose their myogenic identity. At the epaxial level, we demonstrated by the analysis of Six quadruple KO (qKO) embryos, that SIX are required for fetal myogenesis, and for the maintenance of PAX7+ progenitor cells, which differentiated prematurely and are lost by the end of fetal development in qKO embryos. Finally, we showed that Six1 and Six2 are required to establish craniofacial myogenesis by controlling the expression of Myf5. We have thus described an unknown role for SIX proteins in the control of myogenesis at different embryonic levels and refined their involvement in the genetic cascades operating at the head level and in the genesis of myogenic stem cells.


Assuntos
Proteínas de Homeodomínio , Somitos , Camundongos , Animais , Proteínas de Homeodomínio/metabolismo , Diferenciação Celular/genética , Somitos/metabolismo , Desenvolvimento Muscular/genética , Regulação da Expressão Gênica no Desenvolvimento , Músculo Esquelético/metabolismo
2.
Dev Biol ; 410(2): 213-222, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26687508

RESUMO

Gata4 and Gata6 are closely related transcription factors that are essential for the development of a number of embryonic tissues. While they have nearly identical DNA-binding domains and similar patterns of expression, Gata4 and Gata6 null embryos have strikingly different embryonic lethal phenotypes. To determine whether the lack of redundancy is due to differences in protein function or Gata4 and Gata6 expression domains, we generated mice that contained the Gata6 cDNA in place of the Gata4 genomic locus. Gata4(Gata6/Gata6) embryos survived through embryonic day (E)12.5 and successfully underwent ventral folding morphogenesis, demonstrating that Gata6 is able to replace Gata4 function in extraembryonic tissues. Surprisingly, Gata6 is unable to replace Gata4 function in the septum transversum mesenchyme or the epicardium, leading to liver agenesis and lethal heart defects in Gata4(Gata6/Gata6) embryos. These studies suggest that Gata4 has evolved distinct functions in the development of these tissues that cannot be performed by Gata6, even when it is provided in the identical expression domain. Our work has important implications for the respective mechanisms of Gata function during development, as well as the functional evolution of these essential transcription factors.


Assuntos
Fator de Transcrição GATA4/fisiologia , Coração/embriologia , Fígado/embriologia , Animais , DNA Complementar/genética , Fator de Transcrição GATA4/genética , Células HEK293 , Humanos , Camundongos
3.
Development ; 137(1): 5-13, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20023155

RESUMO

Cis-regulatory modules are non-protein-coding regions of DNA essential for the control of gene expression. One class of regulatory modules is embryonic enhancers, which drive gene expression during development as a result of transcription factor protein binding at the enhancer sequences. Recent comparative studies have begun to investigate the evolution of the sequence architecture within enhancers. These analyses are illuminating the way that developmental biologists think about enhancers by revealing their molecular mechanism of function.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos/genética , Evolução Molecular , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Modelos Biológicos
4.
J Vis Exp ; (196)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37335124

RESUMO

Skeletal muscle is the largest tissue of the body and performs multiple functions, from locomotion to body temperature control. Its functionality and recovery from injuries depend on a multitude of cell types and on molecular signals between the core muscle cells (myofibers, muscle stem cells) and their niche. Most experimental settings do not preserve this complex physiological microenvironment, and neither do they allow the ex vivo study of muscle stem cells in quiescence, a cell state that is crucial for them. Here, a protocol is outlined for the ex vivo culture of muscle stem cells with cellular components of their niche. Through the mechanical and enzymatic breakdown of muscles, a mixture of cell types is obtained, which is put in 2D culture. Immunostaining shows that within 1 week, multiple niche cells are present in culture alongside myofibers and, importantly, Pax7-positive cells that display the characteristics of quiescent muscle stem cells. These unique properties make this protocol a powerful tool for cell amplification and the generation of quiescent-like stem cells that can be used to address fundamental and translational questions.


Assuntos
Músculo Esquelético , Células Satélites de Músculo Esquelético , Camundongos , Animais , Diferenciação Celular , Divisão Celular , Células-Tronco , Nicho de Células-Tronco/fisiologia
5.
Dev Biol ; 359(2): 290-302, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21821017

RESUMO

At the Drosophila melanogaster bithorax complex (BX-C) over 330kb of intergenic DNA is responsible for directing the transcription of just three homeotic (Hox) genes during embryonic development. A number of distinct enhancer cis-regulatory modules (CRMs) are responsible for controlling the specific expression patterns of the Hox genes in the BX-C. While it has proven possible to identify orthologs of known BX-C CRMs in different Drosophila species using overall sequence conservation, this approach has not proven sufficiently effective for identifying novel CRMs or defining the key functional sequences within enhancer CRMs. Here we demonstrate that the specific spatial clustering of transcription factor (TF) binding sites is important for BX-C enhancer activity. A bioinformatic search for combinations of putative TF binding sites in the BX-C suggests that simple clustering of binding sites is frequently not indicative of enhancer activity. However, through molecular dissection and evolutionary comparison across the Drosophila genus we discovered that specific TF binding site clustering patterns are an important feature of three known BX-C enhancers. Sub-regions of the defined IAB5 and IAB7b enhancers were both found to contain an evolutionarily conserved signature motif of clustered TF binding sites which is critical for the functional activity of the enhancers. Together, these results indicate that the spatial organization of specific activator and repressor binding sites within BX-C enhancers is of greater importance than overall sequence conservation and is indicative of enhancer functional activity.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Homeodomínio/genética , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Sequência Conservada/genética , Drosophila/embriologia , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Elementos Facilitadores Genéticos/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Modelos Genéticos , Dados de Sequência Molecular , Família Multigênica , Proteínas Nucleares/genética , Motivos de Nucleotídeos/genética , Ligação Proteica , Especificidade da Espécie , Fatores de Transcrição/genética , Transcrição Gênica/genética
6.
Matrix Biol ; 112: 90-115, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35963565

RESUMO

Obesity triggers skeletal muscle physio-pathological alterations. However, the crosstalk between adipose tissue and myogenic cells remains poorly understood during obesity. We identified NID-1 among the adipose tissue secreted factors impairing myogenic potential of human myoblasts and murine muscle stem cells in vitro. Mice under High Fat Diet (HFD) displayed increased NID-1 expression in the skeletal muscle endomysium associated with intramuscular fat adipose tissue expansion and compromised muscle stem cell function. We show that NID-1 is highly secreted by skeletal muscle fibro-adipogenic/mesenchymal progenitors (FAPs) during obesity. We demonstrate that increased muscle NID-1 impairs muscle stem cells proliferation and primes the fibrogenic differentiation of FAPs, giving rise to an excessive deposition of extracellular matrix. Finally, we propose a model in which obesity leads to skeletal muscle extracellular matrix remodeling by FAPs, mediating the alteration of myogenic function by adipose tissue and highlighting the key role of NID-1 in the crosstalk between adipose tissue and skeletal muscle.


Assuntos
Adipogenia , Desenvolvimento Muscular , Animais , Diferenciação Celular , Matriz Extracelular , Humanos , Camundongos , Músculo Esquelético/metabolismo , Obesidade/genética , Obesidade/metabolismo
7.
Cells ; 10(4)2021 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800595

RESUMO

Background: Skeletal muscle is one of the only mammalian tissues capable of rapid and efficient regeneration after trauma or in pathological conditions. Skeletal muscle regeneration is driven by the muscle satellite cells, the stem cell population in interaction with their niche. Upon injury, muscle fibers undergo necrosis and muscle stem cells activate, proliferate and fuse to form new myofibers. In addition to myogenic cell populations, interaction with other cell types such as inflammatory cells, mesenchymal (fibroadipogenic progenitors-FAPs, pericytes) and vascular (endothelial) lineages are important for efficient muscle repair. While the role of the distinct populations involved in skeletal muscle regeneration is well characterized, the quantitative changes in the muscle stem cell and niche during the regeneration process remain poorly characterized. Methods: We have used mass cytometry to follow the main muscle cell types (muscle stem cells, vascular, mesenchymal and immune cell lineages) during early activation and over the course of muscle regeneration at D0, D2, D5 and D7 compared with uninjured muscles. Results: Early activation induces a number of rapid changes in the proteome of multiple cell types. Following the induction of damage, we observe a drastic loss of myogenic, vascular and mesenchymal cell lineages while immune cells invade the damaged tissue to clear debris and promote muscle repair. Immune cells constitute up to 80% of the mononuclear cells 5 days post-injury. We show that muscle stem cells are quickly activated in order to form new myofibers and reconstitute the quiescent muscle stem cell pool. In addition, our study provides a quantitative analysis of the various myogenic populations during muscle repair. Conclusions: We have developed a mass cytometry panel to investigate the dynamic nature of muscle regeneration at a single-cell level. Using our panel, we have identified early changes in the proteome of stressed satellite and niche cells. We have also quantified changes in the major cell types of skeletal muscle during regeneration and analyzed myogenic transcription factor expression in satellite cells throughout this process. Our results highlight the progressive dynamic shifts in cell populations and the distinct states of muscle stem cells adopted during skeletal muscle regeneration. Our findings give a deeper understanding of the cellular and molecular aspects of muscle regeneration.


Assuntos
Músculo Esquelético/patologia , Proteômica , Análise de Célula Única , Cicatrização , Animais , Linhagem da Célula , Camundongos , Desenvolvimento Muscular , Músculo Esquelético/fisiopatologia , Proteoma/metabolismo , Regeneração , Células-Tronco/citologia
8.
J Dev Biol ; 8(1)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053985

RESUMO

The bone morphogenetic protein (BMP) pathway is best known for its role in promoting bone formation, however it has been shown to play important roles in both development and regeneration of many different tissues. Recent work has shown that the BMP proteins have a number of functions in skeletal muscle, from embryonic to postnatal development. Furthermore, complementary studies have recently demonstrated that specific components of the pathway are required for efficient muscle regeneration.

10.
Elife ; 72018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30284969

RESUMO

Adult skeletal muscle maintenance and regeneration depend on efficient muscle stem cell (MuSC) functions. The mechanisms coordinating cell cycle with activation, renewal, and differentiation of MuSCs remain poorly understood. Here, we investigated how adult MuSCs are regulated by CDKN1c (p57kip2), a cyclin-dependent kinase inhibitor, using mouse molecular genetics. In the absence of CDKN1c, skeletal muscle repair is severely impaired after injury. We show that CDKN1c is not expressed in quiescent MuSCs, while being induced in activated and proliferating myoblasts and maintained in differentiating myogenic cells. In agreement, isolated Cdkn1c-deficient primary myoblasts display differentiation defects and increased proliferation. We further show that the subcellular localization of CDKN1c is dynamic; while CDKN1c is initially localized to the cytoplasm of activated/proliferating myoblasts, progressive nuclear translocation leads to growth arrest during differentiation. We propose that CDKN1c activity is restricted to differentiating myoblasts by regulated cyto-nuclear relocalization, coordinating the balance between proliferation and growth arrest.


Assuntos
Células-Tronco Adultas/citologia , Diferenciação Celular/genética , Inibidor de Quinase Dependente de Ciclina p57/genética , Desenvolvimento Muscular/genética , Animais , Pontos de Checagem do Ciclo Celular/genética , Proliferação de Células/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/crescimento & desenvolvimento , Mioblastos/citologia , Mioblastos/metabolismo , Regeneração/genética , Células Satélites de Músculo Esquelético/citologia
11.
J Clin Invest ; 122(10): 3516-28, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23006325

RESUMO

Pancreatic agenesis is a human disorder caused by defects in pancreas development. To date, only a few genes have been linked to pancreatic agenesis in humans, with mutations in pancreatic and duodenal homeobox 1 (PDX1) and pancreas-specific transcription factor 1a (PTF1A) reported in only 5 families with described cases. Recently, mutations in GATA6 have been identified in a large percentage of human cases, and a GATA4 mutant allele has been implicated in a single case. In the mouse, Gata4 and Gata6 are expressed in several endoderm-derived tissues, including the pancreas. To analyze the functions of GATA4 and/or GATA6 during mouse pancreatic development, we generated pancreas-specific deletions of Gata4 and Gata6. Surprisingly, loss of either Gata4 or Gata6 in the pancreas resulted in only mild pancreatic defects, which resolved postnatally. However, simultaneous deletion of both Gata4 and Gata6 in the pancreas caused severe pancreatic agenesis due to disruption of pancreatic progenitor cell proliferation, defects in branching morphogenesis, and a subsequent failure to induce the differentiation of progenitor cells expressing carboxypeptidase A1 (CPA1) and neurogenin 3 (NEUROG3). These studies address the conserved and nonconserved mechanisms underlying GATA4 and GATA6 function during pancreas development and provide a new mouse model to characterize the underlying developmental defects associated with pancreatic agenesis.


Assuntos
Fator de Transcrição GATA4/fisiologia , Fator de Transcrição GATA6/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Organogênese/genética , Pâncreas/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Sítios de Ligação , Carboxipeptidases A/análise , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Modelos Animais de Doenças , Endoderma/metabolismo , Células Epiteliais/patologia , Fator de Transcrição GATA4/deficiência , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA6/deficiência , Fator de Transcrição GATA6/genética , Técnicas de Silenciamento de Genes , Genótipo , Idade Gestacional , Hiperglicemia/congênito , Hiperglicemia/genética , Insulina/metabolismo , Secreção de Insulina , Camundongos , Proteínas do Tecido Nervoso/análise , Especificidade de Órgãos , Pâncreas/anormalidades , Pâncreas/patologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA