Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473787

RESUMO

The current trend in microbiological research aimed at limiting the development of biofilms of multidrug-resistant microorganisms is increasingly towards the search for possible synergistic effects between various compounds. This work presents a combination of a naturally occurring compound, ß-aescin, newly synthesized alkylamidobetaines (AABs) with a general structure-CnTMDAB, and antifungal drugs. The research we conducted consists of several stages. The first stage concerns determining biological activity (antifungal) against selected multidrug-resistant strains of Candida glabrata (C. glabrata) with the highest ability to form biofilms. The second stage of this study determined the activity of ß-aescin combinations with antifungal compounds and alkylamidobetaines. In the next stage of this study, the ability to eradicate a biofilm on the polystyrene surface of the combination of ß-aescin with alkylamidobetaines was examined. It has been shown that the combination of ß-aescin and alkylamidobetaine can firmly remove biofilms and reduce their viability. The last stage of this research was to determine the safety regarding the cytotoxicity of both ß-aescin and alkylamidobetaines. Previous studies on the fibroblast cell line have shown that C9 alkylamidobetaine can be safely used as a component of anti-biofilm compounds. This research increases the level of knowledge about the practical possibilities of using anti-biofilm compounds in combined therapies against C. glabrata.


Assuntos
Antifúngicos , Candida glabrata , Antifúngicos/farmacologia , Escina/farmacologia , Candida albicans , Testes de Sensibilidade Microbiana , Biofilmes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA