Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Antimicrob Agents Chemother ; : e0164323, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639491

RESUMO

The development of novel antiplasmodial compounds with broad-spectrum activity against different stages of Plasmodium parasites is crucial to prevent malaria disease and parasite transmission. This study evaluated the antiplasmodial activity of seven novel hydrazone compounds (referred to as CB compounds: CB-27, CB-41, CB-50, CB-53, CB-58, CB-59, and CB-61) against multiple stages of Plasmodium parasites. All CB compounds inhibited blood stage proliferation of drug-resistant or sensitive strains of Plasmodium falciparum in the low micromolar to nanomolar range. Interestingly, CB-41 exhibited prophylactic activity against hypnozoites and liver schizonts in Plasmodium cynomolgi, a primate model for Plasmodium vivax. Four CB compounds (CB-27, CB-41, CB-53, and CB-61) inhibited P. falciparum oocyst formation in mosquitoes, and five CB compounds (CB-27, CB-41, CB-53, CB-58, and CB-61) hindered the in vitro development of Plasmodium berghei ookinetes. The CB compounds did not inhibit the activation of P. berghei female and male gametocytes in vitro. Isobologram assays demonstrated synergistic interactions between CB-61 and the FDA-approved antimalarial drugs, clindamycin and halofantrine. Testing of six CB compounds showed no inhibition of Plasmodium glutathione S-transferase as a putative target and no cytotoxicity in HepG2 liver cells. CB compounds are promising candidates for further development as antimalarial drugs against multidrug-resistant parasites, which could also prevent malaria transmission.

2.
MMWR Morb Mortal Wkly Rep ; 72(4): 100-106, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36701254

RESUMO

Introduction of monovalent COVID-19 mRNA vaccines in late 2020 helped to mitigate disproportionate COVID-19-related morbidity and mortality in U.S. nursing homes (1); however, reduced effectiveness of monovalent vaccines during the period of Omicron variant predominance led to recommendations for booster doses with bivalent COVID-19 mRNA vaccines that include an Omicron BA.4/BA.5 spike protein component to broaden immune response and improve vaccine effectiveness against circulating Omicron variants (2). Recent studies suggest that bivalent booster doses provide substantial additional protection against SARS-CoV-2 infection and severe COVID-19-associated disease among immunocompetent adults who previously received only monovalent vaccines (3).* The immunologic response after receipt of bivalent boosters among nursing home residents, who often mount poor immunologic responses to vaccines, remains unknown. Serial testing of anti-spike protein antibody binding and neutralizing antibody titers in serum collected from 233 long-stay nursing home residents from the time of their primary vaccination series and including any subsequent booster doses, including the bivalent vaccine, was performed. The bivalent COVID-19 mRNA vaccine substantially increased anti-spike and neutralizing antibody titers against Omicron sublineages, including BA.1 and BA.4/BA.5, irrespective of previous SARS-CoV-2 infection or previous receipt of 1 or 2 booster doses. These data, in combination with evidence of low uptake of bivalent booster vaccination among residents and staff members in nursing homes (4), support the recommendation that nursing home residents and staff members receive a bivalent COVID-19 booster dose to reduce associated morbidity and mortality (2).


Assuntos
COVID-19 , Adulto , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinas contra COVID-19 , Vacinas Combinadas , Rhode Island , Formação de Anticorpos , Ohio , Anticorpos Antivirais , Casas de Saúde , Anticorpos Neutralizantes
3.
Malar J ; 22(1): 369, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049801

RESUMO

BACKGROUND: Plasmodium vivax has been more resistant to various control measures than Plasmodium falciparum malaria because of its greater transmissibility and ability to produce latent parasite forms. Therefore, developing P. vivax vaccines and therapeutic monoclonal antibodies (humAbs) remains a high priority. The Duffy antigen receptor for chemokines (DARC) expressed on erythrocytes is central to P. vivax invasion of reticulocytes. P. vivax expresses a Duffy binding protein (PvDBP) on merozoites, a DARC ligand, and the DARC: PvDBP interaction is critical for P. vivax blood stage malaria. Therefore, PvDBP is a leading vaccine candidate for P. vivax and a target for therapeutic human monoclonal antibodies (humAbs). METHODS: Here, the functional activity of humAbs derived from naturally exposed and vaccinated individuals are compared for the first time using easily cultured Plasmodium knowlesi (P. knowlesi) that had been genetically modified to replace its endogenous PkDBP orthologue with PvDBP to create a transgenic parasite, PkPvDBPOR. This transgenic parasite requires DARC to invade human erythrocytes but is not reticulocyte restricted. This model was used to evaluate the invasion inhibition potential of 12 humAbs (9 naturally acquired; 3 vaccine-induced) targeting PvDBP individually and in combinations using growth inhibition assays (GIAs). RESULTS: The PvDBP-specific humAbs demonstrated 70-100% inhibition of PkPvDBPOR invasion with the IC50 values ranging from 51 to 338 µg/mL for the 9 naturally acquired (NA) humAbs and 33 to 99 µg/ml for the 3 vaccine-induced (VI) humAbs. To evaluate antagonistic, additive, or synergistic effects, six pairwise combinations were performed using select humAbs. Of these combinations tested, one NA/NA (099100/094083) combination demonstrated relatively strong additive inhibition between 10 and 100 µg/mL; all combinations of NA and VI humAbs showed additive inhibition at concentrations below 25 µg/mL and antagonism at higher concentrations. None of the humAb combinations showed synergy. Invasion inhibition efficacy by some mAbs shown with PkPvDBPOR was closely replicated using P. vivax clinical isolates. CONCLUSION: The PkPvDBPOR transgenic model is a robust surrogate of P. vivax to assess invasion and growth inhibition of human monoclonal Abs recognizing PvDBP individually and in combination. There was no synergistic interaction for growth inhibition with the humAbs tested here that target different epitopes or subdomains of PvDBP, suggesting little benefit in clinical trials using combinations of these humAbs.


Assuntos
Vacinas Antimaláricas , Malária Vivax , Plasmodium knowlesi , Animais , Humanos , Plasmodium vivax , Anticorpos Antiprotozoários , Antígenos de Protozoários , Proteínas de Protozoários/metabolismo , Malária Vivax/parasitologia , Eritrócitos/parasitologia , Animais Geneticamente Modificados , Sistema do Grupo Sanguíneo Duffy/metabolismo
4.
Proc Natl Acad Sci U S A ; 115(45): E10548-E10555, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30348763

RESUMO

Parasites of the phylum Apicomplexa are responsible for significant morbidity and mortality on a global scale. Central to the virulence of these pathogens are the phylum-specific, unconventional class XIV myosins that power the essential processes of parasite motility and host cell invasion. Notably, class XIV myosins differ from human myosins in key functional regions, yet they are capable of fast movement along actin filaments with kinetics rivaling previously studied myosins. Toward establishing a detailed molecular mechanism of class XIV motility, we determined the 2.6-Å resolution crystal structure of the Toxoplasma gondii MyoA (TgMyoA) motor domain. Structural analysis reveals intriguing strategies for force transduction and chemomechanical coupling that rely on a divergent SH1/SH2 region, the class-defining "HYAG"-site polymorphism, and the actin-binding surface. In vitro motility assays and hydrogen-deuterium exchange coupled with MS further reveal the mechanistic underpinnings of phosphorylation-dependent modulation of TgMyoA motility whereby localized regions of increased stability and order correlate with enhanced motility. Analysis of solvent-accessible pockets reveals striking differences between apicomplexan class XIV and human myosins. Extending these analyses to high-confidence homology models of Plasmodium and Cryptosporidium MyoA motor domains supports the intriguing potential of designing class-specific, yet broadly active, apicomplexan myosin inhibitors. The successful expression of the functional TgMyoA complex combined with our crystal structure of the motor domain provides a strong foundation in support of detailed structure-function studies and enables the development of small-molecule inhibitors targeting these devastating global pathogens.


Assuntos
Miosina não Muscular Tipo IIA/química , Toxoplasma/metabolismo , Sequência de Aminoácidos , Antiprotozoários/química , Antiprotozoários/farmacologia , Sítios de Ligação , Desenho de Fármacos , Mimetismo Molecular , Mutação , Miosina não Muscular Tipo IIA/antagonistas & inibidores , Miosina não Muscular Tipo IIA/genética , Miosina não Muscular Tipo IIA/metabolismo , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Homologia de Sequência de Aminoácidos , Toxoplasma/efeitos dos fármacos
5.
Am J Physiol Lung Cell Mol Physiol ; 317(2): L247-L258, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31116581

RESUMO

The mechanisms by which transepithelial pressure changes observed during exercise and airway clearance can benefit lung health are challenging to study. Here, we have studied 117 mature, fully ciliated airway epithelial cell filters grown at air-liquid interface grown from 10 cystic fibrosis (CF) and 19 control subjects. These were exposed to cyclic increases in apical air pressure of 15 cmH2O for varying times. We measured the effect on proteins relevant to lung health, with a focus on the CF transmembrane regulator (CFTR). Immunoflourescence and immunoblot data were concordant in demonstrating that air pressure increased F508Del CFTR expression and maturation. This effect was in part dependent on the presence of cilia, on Ca2+ influx, and on formation of nitrogen oxides. These data provide a mechanosensory mechanism by which changes in luminal air pressure, like those observed during exercise and airway clearance, can affect epithelial protein expression and benefit patients with diseases of the airways.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Epitélio/metabolismo , Linhagem Celular , Humanos , Pulmão/metabolismo , Mucosa Respiratória/metabolismo
6.
PLoS Pathog ; 12(7): e1005763, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27467575

RESUMO

A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards overcoming this gap. But the interface could especially be bridged through a scale-up of open sharing of physical compounds, which would accelerate the finding of new starting points for drug discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 compounds representing families of structures identified in phenotypic screens of pharmaceutical and academic libraries against the Plasmodium falciparum malaria parasite. The set has now been distributed to almost 200 research groups globally in the last two years, with the only stipulation that information from the screens is deposited in the public domain. This paper reports for the first time on 236 screens that have been carried out against the Malaria Box and compares these results with 55 assays that were previously published, in a format that allows a meta-analysis of the combined dataset. The combined biochemical and cellular assays presented here suggest mechanisms of action for 135 (34%) of the compounds active in killing multiple life-cycle stages of the malaria parasite, including asexual blood, liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds demonstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 helminths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmacokinetic and metabolic properties were collected on all the compounds, assisting in the selection of the most promising candidates for murine proof-of-concept experiments and medicinal chemistry programs. The data for all of these assays are presented and analyzed to show how outstanding leads for many indications can be selected. These results reveal the immense potential for translating the dispersed expertise in biological assays involving human pathogens into drug discovery starting points, by providing open access to new families of molecules, and emphasize how a small additional investment made to help acquire and distribute compounds, and sharing the data, can catalyze drug discovery for dozens of different indications. Another lesson is that when multiple screens from different groups are run on the same library, results can be integrated quickly to select the most valuable starting points for subsequent medicinal chemistry efforts.


Assuntos
Antimaláricos/uso terapêutico , Conjuntos de Dados como Assunto , Descoberta de Drogas/métodos , Malária/tratamento farmacológico , Doenças Negligenciadas/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Humanos , Bibliotecas de Moléculas Pequenas
7.
J Comput Aided Mol Des ; 32(3): 473-486, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29383466

RESUMO

The proteins involved in the autophagy (Atg) pathway have recently been considered promising targets for the development of new antimalarial drugs. In particular, inhibitors of the protein-protein interaction (PPI) between Atg3 and Atg8 of Plasmodium falciparum retarded the blood- and liver-stages of parasite growth. In this paper, we used computational techniques to design a new class of peptidomimetics mimicking the Atg3 interaction motif, which were then synthesized by click-chemistry. Surface plasmon resonance has been employed to measure the ability of these compounds to inhibit the Atg3-Atg8 reciprocal protein-protein interaction. Moreover, P. falciparum growth inhibition in red blood cell cultures was evaluated as well as the cyto-toxicity of the compounds.


Assuntos
Antimaláricos/química , Proteínas Relacionadas à Autofagia/antagonistas & inibidores , Peptidomiméticos/síntese química , Proteínas de Protozoários/antagonistas & inibidores , Triazóis/síntese química , Antimaláricos/farmacologia , Autofagia , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptidomiméticos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Ligação Proteica , Relação Estrutura-Atividade , Triazóis/farmacologia
8.
J Biol Chem ; 291(8): 3860-70, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26697886

RESUMO

Protein modification by small ubiquitin-related modifiers (SUMOs) is essential and conserved in the malaria parasite, Plasmodium falciparum. We have previously shown that interactions between the SUMO E1-activating and E2-conjugating enzyme in P. falciparum are distinct compared with human, suggesting a potential target for development of parasite-specific inhibitors of SUMOylation. The parasite asexual trophozoite stage is susceptible to iron-induced oxidative stress and is subsequently a target for many of the current anti-malarial drugs. Here, we provide evidence that SUMOylation plays a role in the parasite response to oxidative stress during red blood cell stages, indicative of a protective role seen in other organisms. Using x-ray crystallography, we solved the structure of the human SUMO E1 ubiquitin fold domain in complex with the E2, Ubc9. The interface defined in this structure guided in silico modeling, mutagenesis, and in vitro biochemical studies of the P. falciparum SUMO E1 and E2 enzymes, resulting in the identification of surface residues that explain species-specific interactions. Our findings suggest that parasite-specific inhibitors of SUMOylation could be developed and used in combination therapies with drugs that induce oxidative stress.


Assuntos
Modelos Moleculares , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Enzimas de Conjugação de Ubiquitina/química , Humanos , Estresse Oxidativo/fisiologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Especificidade da Espécie , Sumoilação/fisiologia , Trofozoítos/química , Trofozoítos/enzimologia , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
9.
Drug Discov Today Technol ; 24: 3-9, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29233297

RESUMO

All processes in living organisms are regulated by, or at least influenced by, protein-protein interactions (PPI). Membrane proteins play a fundamental part in this class of interactions: by providing inter-cellular communication and sensing capabilities to the cell, they lead to downstream regulation signaling events. It is therefore not surprising that PPI modulators are of keen interest when developing drug-like molecules for a range of diseases and medical conditions. However, techniques for exploiting PPIs in meaningful ways have only recently become readily available. This review is meant to provide a brief overview of applied techniques for PPI elucidation, and present various case studies of PPI exploitation ranging from early discovery efforts to now-approved market drugs.


Assuntos
Proteínas/antagonistas & inibidores , Animais , Doença , Descoberta de Drogas , Humanos , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas/metabolismo
10.
J Struct Biol ; 190(2): 93-114, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25764948

RESUMO

The apicomplexan family of pathogens, which includes Plasmodium spp. and Toxoplasma gondii, are primarily obligate intracellular parasites and invade multiple cell types. These parasites express extracellular membrane protein receptors, adhesins, to form specific pathogen-host cell interaction complexes. Various adhesins are used to invade a variety of cell types. The receptors are linked to an actomyosin motor, which is part of a complex comprised of many proteins known as the invasion machinery or glideosome. To date, reviews on invasion have focused primarily on the molecular pathways and signals of invasion, with little or no structural information presented. Over 75 structures of parasite receptors and glideosome proteins have been deposited with the Protein Data Bank. These structures include adhesins, motor proteins, bridging proteins, inner membrane complex and cytoskeletal proteins, as well as co-crystal structures with peptides and antibodies. These structures provide information regarding key interactions necessary for target receptor engagement, machinery complex formation, how force is transmitted, and the basis of inhibitory antibodies. Additionally, these structures can provide starting points for the development of antibodies and inhibitory molecules targeting protein-protein interactions, with the aim to inhibit invasion. This review provides an overview of the parasite adhesin protein families, the glideosome components, glideosome architecture, and discuss recent work regarding alternative models.


Assuntos
Actomiosina/metabolismo , Apicomplexa/genética , Apicomplexa/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Proteínas de Membrana/metabolismo , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Bases de Dados de Proteínas , Interações Hospedeiro-Patógeno/genética , Proteínas de Membrana/genética , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína
11.
Malar J ; 14: 324, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26289816

RESUMO

BACKGROUND: Emerging resistance of the malaria parasite Plasmodium to current therapies underscores the critical importance of exploring novel strategies for disease eradication. Plasmodium species are obligate intracellular protozoan parasites. They rely on an unusual form of substrate-dependent motility for their migration on and across host-cell membranes and for host cell invasion. This peculiar motility mechanism is driven by the 'glideosome', an actin-myosin associated, macromolecular complex anchored to the inner membrane complex of the parasite. Myosin A, actin, aldolase, and thrombospondin-related anonymous protein (TRAP) constitute the molecular core of the glideosome in the sporozoite, the mosquito stage that brings the infection into mammals. METHODS: Virtual library screening of a large compound library against the PfAldolase-TRAP complex was used to identify candidate compounds that stabilize and prevent the disassembly of the glideosome. The mechanism of these compounds was confirmed by biochemical, biophysical and parasitological methods. RESULTS: A novel inhibitory effect on the parasite was achieved by stabilizing a protein-protein interaction within the glideosome components. Compound 24 disrupts the gliding and invasive capabilities of Plasmodium parasites in in vitro parasite assays. A high-resolution, ternary X-ray crystal structure of PfAldolase-TRAP in complex with compound 24 confirms the mode of interaction and serves as a platform for future ligand optimization. CONCLUSION: This proof-of-concept study presents a novel approach to anti-malarial drug discovery and design. By strengthening a protein-protein interaction within the parasite, an avenue towards inhibiting a previously "undruggable" target is revealed and the motility motor responsible for successful invasion of host cells is rendered inactive. This study provides new insights into the malaria parasite cell invasion machinery and convincingly demonstrates that liver cell invasion is dramatically reduced by 95 % in the presence of the small molecule stabilizer compound 24.


Assuntos
Frutose-Bifosfato Aldolase/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multiproteicos/química , Proteínas de Protozoários/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Frutose-Bifosfato Aldolase/química , Hepatócitos/efeitos dos fármacos , Humanos , Proteínas de Membrana/química , Simulação de Acoplamento Molecular , Complexos Multiproteicos/efeitos dos fármacos , Plasmodium falciparum/química , Estabilidade Proteica/efeitos dos fármacos , Proteínas de Protozoários/química , Coelhos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/toxicidade , Ressonância de Plasmônio de Superfície
12.
J Biol Chem ; 288(39): 27724-36, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23943616

RESUMO

Small ubiquitin-related modifiers (SUMOs) are post-translationally conjugated to other proteins and are thereby essential regulators of a wide range of cellular processes. Sumoylation, and enzymes of the sumoylation pathway, are conserved in the malaria causing parasite, Plasmodium falciparum. However, the specific functions of sumoylation in P. falciparum, and the degree of functional conservation between enzymes of the human and P. falciparum sumoylation pathways, have not been characterized. Here, we demonstrate that sumoylation levels peak during midstages of the intra-erythrocyte developmental cycle, concomitant with hemoglobin consumption and elevated oxidative stress. In vitro studies revealed that P. falciparum E1- and E2-conjugating enzymes interact effectively to recognize and modify RanGAP1, a model mammalian SUMO substrate. However, in heterologous reactions, P. falciparum E1 and E2 enzymes failed to interact with cognate human E2 and E1 partners, respectively, to modify RanGAP1. Structural analysis, binding studies, and functional assays revealed divergent amino acid residues within the E1-E2 binding interface that define organism-specific enzyme interactions. Our studies identify sumoylation as a potentially important regulator of oxidative stress response during the P. falciparum intra-erythrocyte developmental cycle, and define E1 and E2 interactions as a promising target for development of parasite-specific inhibitors of sumoylation and parasite replication.


Assuntos
Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Sequência de Aminoácidos , Eritrócitos/metabolismo , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia de Fluorescência , Conformação Molecular , Dados de Sequência Molecular , Estresse Oxidativo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Sumoilação , Ubiquitina/metabolismo
13.
Malar J ; 13: 313, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25115675

RESUMO

BACKGROUND: Subtilisin-like protease 2 (SUB2) is a conserved serine protease utilized by Plasmodium parasites as a surface sheddase required for successful merozoite invasion of host red blood cells and has been implicated in ookinete invasion of the mosquito midgut. To determine if SUB2 is a suitable vaccine target to interfere with malaria parasite development, the effects of SUB2-immunization on the Plasmodium life cycle were examined in its vertebrate and invertebrate hosts. METHODS: Swiss Webster mice were immunized with SUB2 peptides conjugated to Keyhole limpet hemocyanin (KLH) or KLH alone, and then challenged with Plasmodium berghei. To determine the effects of immunization on parasite development, infected mice were evaluated by blood film and Giemsa staining. In addition, collected immune sera were used to perform passive immunization experiments in non-immunized, P. berghei-infected mice to determine the potential role of SUB2 in parasite development in the mosquito. RESULTS: Following P. berghei challenge, SUB2-immunized mice develop a lower parasitaemia and show improved survival when compared to control immunized mice. Moreover, SUB2 immunization results in an increase in the number of multiply invaded red blood cells, suggesting that SUB2 antibodies interfere with merozoite invasion. Passive immunization experiments imply that SUB2 may not have a major role in ookinete invasion, but this requires further investigation. CONCLUSION: By interfering with red blood cell invasion, immunization against SUB2 limits malaria parasite development and confers protection from severe malaria. Together, these results provide proof-of-principle evidence for future investigation into the use of SUB2 as a vaccine or drug target to interrupt parasite development in more relevant human malaria models.


Assuntos
Eritrócitos/parasitologia , Vacinas Antimaláricas/imunologia , Malária/imunologia , Merozoítos/imunologia , Plasmodium berghei/imunologia , Sequência de Aminoácidos , Animais , Feminino , Malária/prevenção & controle , Vacinas Antimaláricas/química , Camundongos , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Subtilisina , Vacinas Sintéticas/química , Vacinas Sintéticas/imunologia
14.
Geroscience ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38789833

RESUMO

Infections, despite vaccination, can be clinically consequential for frail nursing home residents (NHR). Poor vaccine-induced antibody quality may add risk for such subsequent infections and more severe disease. We assessed antibody binding avidity, as a surrogate for antibody quality, among NHR and healthcare workers (HCW). We longitudinally sampled 112 NHR and 52 HCWs who received the BNT162b2 mRNA vaccine after each dose up to the Wuhan-BA.4/5-based Omicron bivalent boosters. We quantified anti-spike, anti-receptor binding domain (RBD), and avidity levels to the ancestral Wuhan, Delta, and Omicron BA.1 & 4/5 strains. The primary vaccination series produced substantial anti-spike and RBD levels which were low in avidity against all strains tested. Antibody avidity progressively increased in the 6-8 months that followed. Avidity significantly increased after the 1st booster but not for subsequent boosters. This study underscores the importance of booster vaccination among NHR and HCWs. The 1st booster dose increases avidity, increasing vaccine-induced functional antibody. The higher cross-reactivity of higher avidity antibodies to other SARS-CoV-2 strains should translate to better protection from ever-evolving strains. Higher avidities may help explain how the vaccine's protective effects persist despite waning antibody titers after each vaccine dose.

15.
EBioMedicine ; 105: 105180, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38861869

RESUMO

BACKGROUND: Bivalent SARS-CoV-2 vaccines were developed to counter increasing susceptibility to emerging SARS-CoV-2 variants. We evaluated the durability of immunity and protection following first bivalent vaccination among nursing home residents. METHODS: We evaluated anti-spike and neutralization titers from blood in 653 community nursing home residents before and after each monovalent booster, and a bivalent vaccine. Concurrent clinical outcomes were evaluated using electronic health record data from a separate cohort of 3783 residents of Veterans Affairs (VA) nursing homes who had received at least the primary series monovalent vaccination. Using target trial emulation, we compared VA residents who did and did not receive the bivalent vaccine to measure vaccine effectiveness against infection, hospitalization, and death. FINDINGS: In the community cohort, Omicron BA.5 neutralization activity rose after each monovalent and bivalent booster vaccination regardless of prior infection history. Titers declined over time but six months post-bivalent vaccination, BA.5 neutralization persisted at detectable levels in 75% of infection-naive and 98% of prior-infected individuals. In the VA nursing home cohort, bivalent vaccine added effectiveness to monovalent booster vaccination by 18.5% for infection (95% confidence interval (CI) -5.6, 34.0%), and 29.2% for hospitalization or death (95% CI -14.2, 56.2%) over five months. INTERPRETATION: The level of protection declined after bivalent vaccination over a 6 month period and may open a window of added vulnerability before the next updated vaccine becomes available, suggesting a subset of nursing home residents may benefit from an additional vaccination booster. FUNDING: CDC, NIH, VHA.

16.
bioRxiv ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38370683

RESUMO

New therapeutics are a priority for preventing and eliminating Plasmodium vivax (Pv) malaria because of its easy transmissibility and dormant stages in the liver. Relapses due to the dormant liver stages are the major contributor to reoccurring Pv. Therefore, therapies that reduce the establishment of dormant parasites and blood-stage infection are important for controlling this geographically widespread parasite. Here, we isolated 12 human monoclonal antibodies (humAbs) from the plasma of a Pv-exposed individual that recognized Pv apical membrane antigen 1 (PvAMA1). PvAMA1 is important for both sporozoite invasion of hepatocytes and merozoite invasion of reticulocytes. We identified one humAb, 826827, that blocked invasion of human erythrocytes using a transgenic P. falciparum line expressing PvAMA1 (IC 50 = 3 µg/mL) and all Pv clinical isolates in vitro . This humAb also inhibited sporozoite invasion of a human hepatocyte cell line and primary human hepatocytes (IC 50 of 0.3 - 3.7 µg/mL). The crystal structure of recombinant PvAMA1 with the antigen-binding fragment of 826827 at 2.4 Å resolution shows that the humAb partially occupies the highly conserved hydrophobic groove in PvAMA1 that binds its known receptor, RON2. HumAb 826827 binds to PvAMA1 with higher affinity than RON2, accounting for its potency. To our knowledge, this is the first reported humAb specific to PvAMA1, and the PvAMA1 residues it binds to are highly conserved across different isolates, explaining its strain-transcendent properties.

17.
medRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585784

RESUMO

Background: SARS-CoV-2 vaccination has reduced hospitalization and mortality for nursing home residents (NHRs). However, emerging variants coupled with waning immunity, immunosenescence, and variability of vaccine efficacy undermine vaccine effectiveness. We therefore need to update our understanding of the immunogenicity of the most recent XBB.1.5 monovalent vaccine to variant strains among NHRs. Methods: The current study focuses on a subset of participants from a longitudinal study of consented NHRs and HCWs who have received serial blood draws to assess immunogenicity with each SARS-CoV-2 mRNA vaccine dose. We report data on participants who received the XBB.1.5 monovalent vaccine after FDA approval in Fall 2023. NHRs were classified based on whether they had an interval SARS-CoV-2 infection between their first bivalent vaccine dose and their XBB.1.5 monovalent vaccination. Results: The sample included 61 NHRs [median age 76 (IQR 68-86), 51% female] and 28 HCWs [median age 45 (IQR 31-58), 46% female). Following XBB.1.5 monovalent vaccination, there was a robust geometric mean fold rise (GMFR) in XBB.1.5-specific neutralizing antibody titers of 17.3 (95% confidence interval [CI] 9.3, 32.4) and 11.3 (95% CI 5, 25.4) in NHRs with and without interval infection, respectively. The GMFR in HCWs was 13.6 (95% CI 8.4,22). Similarly, we noted a robust GMFR in JN.1-specific neutralizing antibody titers of 14.9 (95% CI 7.9, 28) and 6.5 (95% CI 3.3, 13.1) among NHRs with and without interval infection, and a GMFR of 11.4 (95% CI 6.2, 20.9) in HCWs. NHRs with interval SARS-CoV-2 infection had higher neutralizing antibody titers across all analyzed strains following XBB.1.5 monovalent vaccination, compared to NHRs without interval infection. Conclusion: The XBB.1.5 monovalent vaccine significantly elevates Omicron-specific neutralizing antibody titers to XBB.1.5 and JN.1 strains in both NHRs and HCWs. This response was more pronounced in individuals known to be infected with SARS-CoV-2 since bivalent vaccination. Impact Statement: All authors certify that this work entitled " Broad immunogenicity to prior strains and JN.1 variant elicited by XBB.1.5 vaccination in nursing home residents " is novel. It shows that the XBB.1.5 monovalent vaccine significantly elevates Omicron-specific neutralizing antibody titers in both nursing home residents and healthcare workers to XBB and BA.28.6/JN.1 strains. This work is important since JN.1 increased from less than 0.1% to 94% of COVID-19 cases from October 2023 to February 2024 in the US. This information is timely given the CDC's latest recommendation that adults age 65 and older receive a Spring 2024 XBB booster. Since the XBB.1.5 monovalent vaccine produces compelling immunogenicity to the most prevalent circulating JN.1 strain in nursing home residents, our findings add important support and rationale to encourage vaccine uptake. Key Points: Emerging SARS-CoV-2 variants together with waning immunity, immunosenescence, and variable vaccine efficacy reduce SARS-CoV-2 vaccine effectiveness in nursing home residents.XBB.1.5 monovalent vaccination elicited robust response in both XBB.1.5 and JN.1 neutralizing antibodies in nursing home residents and healthcare workers, although the absolute titers to JN.1 were less than titers to XBB.1.5Why does this paper matter? Among nursing home residents, the XBB.1.5 monovalent SARS-CoV-2 vaccine produces compelling immunogenicity to the JN.1 strain, which represents 94% of all COVID-19 cases in the U.S. as of February 2024.

18.
Chembiochem ; 14(11): 1309-15, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23824585

RESUMO

1-Deoxy-D-xylulose 5-phosphate (DXP) synthase catalyzes the first step in the nonmammalian isoprenoid biosynthetic pathway to form DXP from pyruvate and D-glyceraldehyde 3-phosphate (D-GAP) in a thiamin diphosphate-dependent manner. Its unique structure and mechanism distinguish DXP synthase from its homologues and suggest that it should be pursued as an anti-infective drug target. However, few reports describe any development of selective inhibitors of this enzyme. Here, we reveal that DXP synthase catalyzes C-N bond formation and exploit aromatic nitroso substrates as active site probes. Substrate specificity studies reveal a high affinity of DXP synthase for aromatic nitroso substrates compared to the related ThDP-dependent enzyme pyruvate dehydrogenase (PDH). Results from inhibition and mutagenesis studies indicate that nitroso substrates bind to E. coli DXP synthase in a manner distinct from that of D-GAP. Our results suggest that the incorporation of aryl acceptor substrate mimics into unnatural bisubstrate analogues will impart selectivity to DXP synthase inhibitors. As a proof of concept, we show selective inhibition of DXP synthase by benzylacetylphosphonate (BnAP).


Assuntos
Inibidores Enzimáticos/química , Transferases/metabolismo , Biocatálise , Carbono/química , Domínio Catalítico , Inibidores Enzimáticos/metabolismo , Cinética , Nitrogênio/química , Especificidade por Substrato , Terpenos/química , Terpenos/metabolismo , Transferases/química
19.
J Mol Recognit ; 26(10): 496-500, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23996492

RESUMO

We have developed an expression system capable of producing large quantities of low cost, specific peptides that are either His12 -tagged, biotinylated, or unlabeled. The flexibility of this peptide system is suitable for interaction studies via surface plasmon resonance (SPR), co-crystallization, and enzyme-linked immunosorbent assay. Gene blocks containing peptide sequences of interest in addition to a 15 amino acid AviTag™, were cloned into a vector expressing an N-terminal maltose binding protein. The constructs were expressed and purified, and the molecular weights of the recombinant proteins were estimated by analytical size exclusion chromatography. Successful in situ biotinylation of the AviTag was confirmed by anti-biotin western blot and was used for coupling to the surface plasmon resonance chip. We were able to validate, as a proof of concept study, the specific protein-protein interaction of Plasmodium falciparum aldolase (PfAldolase) with three different cytoplasmic adhesin tail peptides from the family of thrombospondin-related anonymous proteins (TRAPs), and to determine their affinities. This method of peptide production enables high yield production of peptides in a two-day, cost effective manner. This tool will allow us to screen for protein-protein interaction inhibitors directed toward the liver stage and blood stage complexes of the glideosome in Plasmodium species. Adaptation of this tool will allow researchers to pursue their own studies of protein-protein interactions.


Assuntos
Frutose-Bifosfato Aldolase/química , Peptídeos/química , Plasmodium falciparum/química , Proteínas de Protozoários/química , Sequência de Aminoácidos , Sequência de Bases , Biotinilação , Clonagem Molecular , Ensaio de Imunoadsorção Enzimática , Escherichia coli/genética , Frutose-Bifosfato Aldolase/genética , Dispositivos Lab-On-A-Chip , Dados de Sequência Molecular , Peptídeos/genética , Plasmídeos , Plasmodium falciparum/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Coloração e Rotulagem , Ressonância de Plasmônio de Superfície
20.
bioRxiv ; 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36945444

RESUMO

The Duffy antigen receptor for chemokines (DARC) expressed on erythrocytes is central to Plasmodium vivax (Pv) invasion of reticulocytes. Pv expresses a Duffy binding protein (PvDBP) on merozoites, a DARC ligand, and their protein-protein interaction is central to vivax blood stage malaria. Here we compared the functional activity of humAbs derived from naturally exposed and vaccinated individuals for the first time using easily cultured P. knowlesi (Pk) that had been genetically modified to replace its endogenous PkDBP orthologue with PvDBP to create a transgenic parasite, PkPvDBPOR. This transgenic parasite requires DARC to invade human erythrocytes but is not reticulocyte restricted. Using this model, we evaluated the invasion inhibition potential of 12 humAbs (9 naturally acquired; 3 vaccine-induced) targeting PvDBP individually and in combinations using growth inhibition assays (GIAs). The PvDBP-specific humAbs demonstrated 70-100% inhibition of PkPvDBPOR invasion with the IC50 values ranging from 51 to 338 µg/mL for the 9 naturally acquired (NA) humAbs and 33 to 99 µg/ml for the 3 vaccine-induced (VI) humAbs. To evaluate antagonistic, additive, or synergistic effects, six pairwise combinations were performed using select humAbs. Of these combinations tested, one NA/NA (099100/094083) combination demonstrated relatively strong additive inhibition between 10-100 µg/mL; all combinations of NA and VI humAbs showed additive inhibition at concentrations below 25 µg/mL and antagonism at higher concentrations. None of the humAb combinations showed synergy. This PkPvDBPOR model system enables efficient assessment of NA and VI humAbs individually and in combination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA