Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 12(1): 513, 2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34563248

RESUMO

BACKGROUND: Bones have a remarkable capacity to heal upon fracture. Yet, in large defects or compromised conditions healing processes become impaired, resulting in delayed or non-union. Current therapeutic approaches often utilize autologous or allogeneic bone grafts for bone augmentation. However, limited availability of these tissues and lack of predictive biological response result in limitations for clinical demands. Tissue engineering using viable cell-based implants is a strategic approach to address these unmet medical needs. METHODS: Herein, the in vitro and in vivo cartilage and bone tissue formation potencies of human pluripotent stem cells were investigated. The induced pluripotent stem cells were specified towards the mesodermal lineage and differentiated towards chondrocytes, which subsequently self-assembled into cartilaginous organoids. The tissue formation capacity of these organoids was then challenged in an ectopic and orthotopic bone formation model. RESULTS: The derived chondrocytes expressed similar levels of collagen type II as primary human articular chondrocytes and produced stable cartilage when implanted ectopically in vivo. Upon targeted promotion towards hypertrophy and priming with a proinflammatory mediator, the organoids mediated successful bridging of critical size long bone defects in immunocompromised mice. CONCLUSIONS: These results highlight the promise of induced pluripotent stem cell technology for the creation of functional cartilage tissue intermediates that can be explored for novel bone healing strategies.


Assuntos
Organoides , Células-Tronco Pluripotentes , Animais , Osso e Ossos , Cartilagem , Condrócitos , Condrogênese , Humanos , Camundongos , Engenharia Tecidual
2.
Bone ; 139: 115520, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32622872

RESUMO

INTRODUCTION: The repair of deep osteochondral joint surface defects represents a significant unmet clinical need. Importantly, untreated lesions lead to a high rate of osteoarthritis. The current strategies to repair these defects include osteochondral autograft transplantation or "sandwich" strategies combining bone autografts with autologous chondrocyte implantation, with poorly documented long-term outcomes. In this study, we first investigated the capacity of juvenile osteochondral grafts (OCGs) to repair osteochondral defects in skeletally mature rats. With this regenerative model in view, we produced a new biological, bilayered and scaffold-free Tissue Engineered construct (bTEC) for the repair of a deep osteochondral defect of the rat knee. METHODS: Cylindrical OCGs were excised from the femoral intercondylar groove of the knee of skeletally immature rats (5 weeks) and transplanted into osteochondral defects created in skeletally mature rats (11 weeks). To create bTECs, micromasses (µMasses) of human periosteum-derived progenitor cells (hPDCs) and human articular chondrocytes (hACs) were produced in vitro using previously optimized chemically defined medium formulations containing growth and differentiation factors including bone morphogenetic proteins. These two µMass types were subsequently implanted as bilayered constructs into osteochondral defects in nude rats. At 4 and 16 weeks after surgery, the knees were collected and processed for subsequent 3D imaging analysis and histological evaluation. Micro-computed tomography (µCT), H&E, and Safranin O staining were used to evaluate the degree and quality of tissue repair. RESULTS: The osteochondral unit of the knee joint in 5 weeks old rats exhibits an immature phenotype, displaying active subchondral bone formation through endochondral ossification and the absence of a tidemark. When transplanted into skeletally mature animals, the immature OCGs resumed their maturation process, i.e., formed new subchondral bone, established the tidemark, and maintained their Safranin O-positive hyaline cartilage at 16 weeks after transplantation. The bTECs (hPDCs + hACs) could partially recapitulate the biology as seen with the immature OCGs, including the formation of the joint surface architecture with typical zonation, ranging from non-mineralized hyaline cartilage in the superficial layers to a progressively mineralized matrix at the interface with a new subchondral bone plate. CONCLUSIONS: Cell-based TE constructs mimicking immature OCGs and displaying a hierarchically organized structure comprising of different tissue forming units seem an attractive strategy to treat deep osteochondral defects of the knee.


Assuntos
Cartilagem Articular , Engenharia Tecidual , Animais , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/cirurgia , Condrócitos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Periósteo , Ratos , Microtomografia por Raio-X
3.
J Tissue Eng Regen Med ; 12(3): 794-807, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28603948

RESUMO

Mimicking developmental events has been proposed as a strategy to engineer tissue constructs for regenerative medicine. However, this approach has not yet been investigated for skeletal tissues. Here, it is demonstrated that ectopic implantation of day-14.5 mouse embryonic long bone anlagen, dissociated into single cells and randomly incorporated in a bioengineered construct, gives rise to epiphyseal growth plate-like structures, bone and marrow, which share many morphological and molecular similarities to epiphyseal units that form after transplanting intact long bone anlage, demonstrating substantial robustness and autonomy of complex tissue self-assembly and the overall organogenesis process. In vitro studies confirm the self-aggregation and patterning capacity of anlage cells and demonstrate that the model can be used to evaluate the effects of large and small molecules on biological behaviour. These results reveal the preservation of self-organizing and self-patterning capacity of anlage cells even when disconnected from their developmental niche and subjected to system perturbations such as cellular dissociation. These inherent features make long bone anlage cells attractive as a model system for tissue engineering technologies aimed at creating constructs that have the potential to self-assemble and self-pattern complex architectural structures.


Assuntos
Osso e Ossos/fisiologia , Extremidades/embriologia , Engenharia Tecidual/métodos , Animais , Cartilagem/embriologia , Cartilagem/transplante , Agregação Celular , Embrião de Mamíferos/citologia , Extremidades/transplante , Lâmina de Crescimento/citologia , Lâmina de Crescimento/embriologia , Camundongos Nus , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA