Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Neurosci ; 46(8): 667-681, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37248111

RESUMO

GluN3A is a glycine-binding subunit belonging to the NMDA receptor (NMDAR) family that can assemble with GluN1 subunits to form unconventional NMDARs insensitive to glutamate and activated by glycine only. The existence of such excitatory glycine receptors (eGlyRs) in the central nervous system (CNS) has long remained elusive. Recently, eGlyRs have been identified in specific brain regions, where they represent a novel neuronal signaling modality by which extracellular glycine tunes neuronal excitability, circuit function, and behavior. In this review, we summarize the emerging knowledge regarding these underappreciated receptors. The existence of eGlyRs reshapes current understanding of NMDAR diversity and of glycinergic signaling, previously thought to be primarily inhibitory. Given that GluN3A expression is concentrated in brain regions regulating emotional responses, eGlyRs are potential new targets of therapeutic interest in neuropsychiatry.


Assuntos
Receptores de Glicina , Receptores de N-Metil-D-Aspartato , Humanos , Encéfalo/metabolismo , Glicina/metabolismo , Glicina/farmacologia , Neurônios/metabolismo , Receptores de Glicina/metabolismo
2.
Science ; 382(6677): 1389-1394, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38060673

RESUMO

Fast synaptic neurotransmission in the vertebrate central nervous system relies primarily on ionotropic glutamate receptors (iGluRs), which drive neuronal excitation, and type A γ-aminobutyric acid receptors (GABAARs), which are responsible for neuronal inhibition. However, the GluD1 receptor, an iGluR family member, is present at both excitatory and inhibitory synapses. Whether and how GluD1 activation may affect inhibitory neurotransmission is unknown. In this work, by using a combination of biochemical, structural, and functional analyses, we demonstrate that GluD1 binds GABA, a previously unknown feature of iGluRs. GluD1 activation produces long-lasting enhancement of GABAergic synaptic currents in the adult mouse hippocampus through a non-ionotropic mechanism that is dependent on trans-synaptic anchoring. The identification of GluD1 as a GABA receptor that controls inhibitory synaptic plasticity challenges the classical dichotomy between glutamatergic and GABAergic receptors.


Assuntos
Inibição Neural , Plasticidade Neuronal , Receptores de GABA , Transmissão Sináptica , Ácido gama-Aminobutírico , Animais , Camundongos , Ácido gama-Aminobutírico/metabolismo , Glutamato Desidrogenase/metabolismo , Hipocampo/metabolismo , Receptores de GABA/metabolismo , Sinapses/fisiologia , Camundongos Knockout , Racemases e Epimerases/genética
3.
Neuron ; 110(15): 2438-2454.e8, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35700736

RESUMO

GluN3A is an atypical glycine-binding subunit of NMDA receptors (NMDARs) whose actions in the brain are mostly unknown. Here, we show that the expression of GluN3A subunits controls the excitability of mouse adult cortical and amygdalar circuits via an unusual signaling mechanism involving the formation of excitatory glycine GluN1/GluN3A receptors (eGlyRs) and their tonic activation by extracellular glycine. eGlyRs are mostly extrasynaptic and reside in specific neuronal populations, including the principal cells of the basolateral amygdala (BLA) and SST-positive interneurons (SST-INs) of the neocortex. In the BLA, tonic eGlyR currents are sensitive to fear-conditioning protocols, are subject to neuromodulation by the dopaminergic system, and control the stability of fear memories. In the neocortex, eGlyRs control the in vivo spiking of SST-INs and the behavior-dependent modulation of cortical activity. GluN3A-containing eGlyRs thus represent a novel and widespread signaling modality in the adult brain, with attributes that strikingly depart from those of conventional NMDARs.


Assuntos
Tonsila do Cerebelo , Neocórtex , Receptores de Glicina , Receptores de N-Metil-D-Aspartato , Tonsila do Cerebelo/metabolismo , Animais , Córtex Cerebral/metabolismo , Glicina/metabolismo , Interneurônios/metabolismo , Camundongos , Neocórtex/metabolismo , Neurônios/metabolismo , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
4.
Front Cell Neurosci ; 12: 449, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30542267

RESUMO

Metabotropic glutamate receptors (mGlus) are G Protein coupled-receptors that modulate synaptic transmission and plasticity in the central nervous system. Some act as autoreceptors to control neurotransmitter release at excitatory synapses and have become attractive targets for drug therapy to treat certain neurological disorders. However, the high degree of sequence conservation around the glutamate binding site makes the development of subtype-specific orthosteric ligands difficult to achieve. This problem can be circumvented by designing molecules that target specific less well conserved allosteric sites. One such allosteric drug, the photo-switchable compound OptoGluNAM4.1, has been recently employed to reversibly inhibit the activity of metabotropic glutamate 4 (mGlu4) receptors in cell cultures and in vivo. We studied OptoGluNAM4.1 as a negative modulator of neurotransmission in rodent cerebellar slices at the parallel fiber - Purkinje cell synapse. Our data show that OptoGluNAM4.1 antagonizes pharmacological activation of mGlu4 receptors in a fully reversible and photo-controllable manner. In addition, for the first time, this new allosteric modulator allowed us to demonstrate that, in brain slices from the rodent cerebellar cortex, mGlu4 receptors are endogenously activated in excitotoxic conditions, such as the early phases of simulated cerebellar ischemia, which is associated with elevated levels of extracellular glutamate. These findings support OptoGluNAM4.1 as a promising new tool for unraveling the role of mGlu4 receptors in the central nervous system in physio-pathological conditions.

5.
Neuropharmacology ; 121: 247-260, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28456688

RESUMO

In cerebellar cortex, mGlu4 receptors located on parallel fibers play an essential role in normal motor function, but the molecular mechanisms involved are not yet completely understood. Using a strategy combining biochemical and electrophysiological approaches in the rodent cerebellum, we demonstrate that presynaptic mGlu4 receptors control synaptic transmission through an atypical activation of Gαq proteins. First, the Gαq subunit, PLC and PKC signaling proteins present in cerebellar extracts are retained on affinity chromatography columns grafted with different sequences of the cytoplasmic domain of mGlu4 receptor. The i2 loop and the C terminal domain were used as baits, two domains that are known to play a pivotal role in coupling selectivity and efficacy. Second, in situ proximity ligation assays show that native mGlu4 receptors and Gαq subunits are in close physical proximity in cerebellar cortical slices. Finally, electrophysiological experiments demonstrate that the molecular mechanisms underlying mGlu4 receptor-mediated inhibition of transmitter release at cerebellar Parallel Fiber (PF) - Molecular Layer Interneuron (MLI) synapses involves the Gαq-PLC signaling pathway. Taken together, our results provide compelling evidence that, in the rodent cerebellar cortex, mGlu4 receptors act by coupling to the Gαq protein and PLC effector system to reduce glutamate synaptic transmission.


Assuntos
Córtex Cerebelar/citologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia , Animais , Animais Recém-Nascidos , Benzopiranos/farmacologia , Citoplasma/metabolismo , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Rede Nervosa/efeitos dos fármacos , Propionatos/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato Metabotrópico/genética , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética
6.
Nat Commun ; 8(1): 1967, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29213077

RESUMO

Antibodies have enormous therapeutic and biotechnology potential. G protein-coupled receptors (GPCRs), the main targets in drug development, are of major interest in antibody development programs. Metabotropic glutamate receptors are dimeric GPCRs that can control synaptic activity in a multitude of ways. Here we identify llama nanobodies that specifically recognize mGlu2 receptors, among the eight subtypes of mGluR subunits. Among these nanobodies, DN10 and 13 are positive allosteric modulators (PAM) on homodimeric mGlu2, while DN10 displays also a significant partial agonist activity. DN10 and DN13 have no effect on mGlu2-3 and mGlu2-4 heterodimers. These PAMs enhance the inhibitory action of the orthosteric mGlu2/mGlu3 agonist, DCG-IV, at mossy fiber terminals in the CA3 region of hippocampal slices. DN13 also impairs contextual fear memory when injected in the CA3 region of hippocampal region. These data highlight the potential of developing antibodies with allosteric actions on GPCRs to better define their roles in vivo.


Assuntos
Medo/fisiologia , Hipocampo/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/farmacologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Sítios de Ligação , Camelídeos Americanos , AMP Cíclico/metabolismo , Ciclopropanos , Ácido Glutâmico/sangue , Ácido Glutâmico/metabolismo , Glicina/análogos & derivados , Células HEK293 , Hipocampo/efeitos dos fármacos , Humanos , Fosfatos de Inositol/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Neurônios/fisiologia , Receptores Opioides
7.
Behav Brain Res ; 299: 6-10, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26592164

RESUMO

Impulsivity trait was characterized in 3-5 months old BACHD rats, a transgenic model of Huntington disease, using (1) the delay discounting task to assess cognitive/choice impulsivity, and (2) the Differential Reinforcement of Low Rate of Responding task to evaluate motor/action impulsivity. Transgenic animals showed a high level of choice impulsivity and, to a lesser extent, action impulsivity. Our results provide the first evidence that the transgenic BACHD rat (TG5 line) displays impulsivity disorder as early as 3 months old, as described in early symptomatic HD patients, thus adding to the face validity of the rat model.


Assuntos
Comportamento Animal , Doença de Huntington/psicologia , Comportamento Impulsivo/fisiologia , Ratos Transgênicos , Animais , Tomada de Decisões , Modelos Animais de Doenças , Masculino , Atividade Motora/fisiologia , Ratos
8.
Front Cell Neurosci ; 7: 225, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348328

RESUMO

We investigated the functional expression of nicotinic acetylcholine receptors (nAChRs) in heterogeneous populations of dissociated rat and mouse lumbar dorsal root ganglion (DRG) neurons by calcium imaging. By this experimental approach, it is possible to investigate the functional expression of multiple receptor and ion-channel subtypes across more than 100 neuronal and glial cells simultaneously. Based on nAChR expression, DRG neurons could be divided into four subclasses: (1) neurons that express predominantly α3ß4 and α6ß4 nAChRs; (2) neurons that express predominantly α7 nAChRs; (3) neurons that express a combination of α3ß4/α6ß4 and α7 nAChRs; and (4) neurons that do not express nAChRs. In this comparative study, the same four neuronal subclasses were observed in mouse and rat DRG. However, the expression frequency differed between species: substantially more rat DRG neurons were in the first three subclasses than mouse DRG neurons, at all developmental time points tested in our study. Approximately 70-80% of rat DRG neurons expressed functional nAChRs, in contrast to only ~15-30% of mouse DRG neurons. Our study also demonstrated functional coupling between nAChRs, voltage-gated calcium channels, and mitochondrial Ca(2) (+) transport in discrete subsets of DRG neurons. In contrast to the expression of nAChRs in DRG neurons, we demonstrated that a subset of non-neuronal DRG cells expressed muscarinic acetylcholine receptors and not nAChRs. The general approach to comparative cellular neurobiology outlined in this paper has the potential to better integrate molecular and systems neuroscience by uncovering the spectrum of neuronal subclasses present in a given cell population and the functionally integrated signaling components expressed in each subclass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA