Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Mol Cell ; 84(1): 17-19, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181757

RESUMO

Ebner et al.1 discovered a nutrient-dependent molecular feedback circuit that employs mTORC1, lipid kinases, and phosphatases to generate phosphatidylinositol-3-phosphate [PI(3)P] or phosphatidylinositol-4-phosphate [PI(4)P] in a mutually exclusive manner on lysosomes, which respectively convert lysosomes into organelles that support anabolism or catabolism.


Assuntos
Crise de Identidade , Fosfatidilinositóis , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética
2.
J Biol Chem ; 298(8): 102187, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35760104

RESUMO

Lysosome membranes contain diverse phosphoinositide (PtdIns) lipids that coordinate lysosome function and dynamics. The PtdIns repertoire on lysosomes is tightly regulated by the actions of diverse PtdIns kinases and phosphatases; however, specific roles for PtdIns in lysosomal functions and dynamics are currently unclear and require further investigation. It was previously shown that PIKfyve, a lipid kinase that synthesizes PtdIns(3,5)P2 from PtdIns(3)P, controls lysosome "fusion-fission" cycle dynamics, autophagosome turnover, and endocytic cargo delivery. Furthermore, INPP4B, a PtdIns 4-phosphatase that hydrolyzes PtdIns(3,4)P2 to form PtdIns(3)P, is emerging as a cancer-associated protein with roles in lysosomal biogenesis and other lysosomal functions. Here, we investigated the consequences of disrupting PIKfyve function in Inpp4b-deficient mouse embryonic fibroblasts. Through confocal fluorescence imaging, we observed the formation of massively enlarged lysosomes, accompanied by exacerbated reduction of endocytic trafficking, disrupted lysosome fusion-fission dynamics, and inhibition of autophagy. Finally, HPLC scintillation quantification of 3H-myo-inositol labeled PtdIns and PtdIns immunofluorescence staining, we observed that lysosomal PtdIns(3)P levels were significantly elevated in Inpp4b-deficient cells due to the hyperactivation of phosphatidylinositol 3-kinase catalytic subunit VPS34 enzymatic activity. In conclusion, our study identifies a novel signaling axis that maintains normal lysosomal homeostasis and dynamics, which includes the catalytic functions of Inpp4b, PIKfyve, and VPS34.


Assuntos
Fibroblastos , Fosfatidilinositol 3-Quinases , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Fibroblastos/metabolismo , Lisossomos/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , Monoéster Fosfórico Hidrolases/genética
3.
Biochem Soc Trans ; 51(5): 1765-1776, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37737061

RESUMO

Cardiolipin and phosphatidylinositol along with the latter's phosphorylated derivative phosphoinositides, control a wide range of cellular functions from signal transduction, membrane traffic, mitochondrial function, cytoskeletal dynamics, and cell metabolism. An emerging dimension to these lipids is the specificity of their fatty acyl chains that is remarkably distinct from that of other glycerophospholipids. Cardiolipin and phosphatidylinositol undergo acyl remodeling involving the sequential actions of phospholipase A to hydrolyze acyl chains and key acyltransferases that re-acylate with specific acyl groups. LCLAT1 (also known as LYCAT, AGPAT8, LPLAT6, or ALCAT1) is an acyltransferase that contributes to specific acyl profiles for phosphatidylinositol, phosphoinositides, and cardiolipin. As such, perturbations of LCLAT1 lead to alterations in cardiolipin-dependent phenomena such as mitochondrial respiration and dynamics and phosphoinositide-dependent processes such as endocytic membrane traffic and receptor signaling. Here we examine the biochemical and cellular actions of LCLAT1, as well as the contribution of this acyltransferase to the development and specific diseases.


Assuntos
Aciltransferases , Cardiolipinas , Aciltransferases/metabolismo , Cardiolipinas/metabolismo , Fosfatidilinositóis , Glicerofosfolipídeos
4.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902293

RESUMO

Vacuolar ATPases (V-ATPases) are multi-subunit ATP-dependent proton pumps necessary for cellular functions, including pH regulation and membrane fusion. The evidence suggests that the V-ATPase a-subunit's interaction with the membrane signaling lipid phosphatidylinositol (PIPs) regulates the recruitment of V-ATPase complexes to specific membranes. We generated a homology model of the N-terminal domain of the human a4 isoform (a4NT) using Phyre2.0 and propose a lipid binding domain within the distal lobe of the a4NT. We identified a basic motif, K234IKK237, critical for interaction with phosphoinositides (PIP), and found similar basic residue motifs in all four mammalian and both yeast a-isoforms. We tested PIP binding of wildtype and mutant a4NT in vitro. In protein lipid overlay assays, the double mutation K234A/K237A and the autosomal recessive distal renal tubular-causing mutation K237del reduced both PIP binding and association with liposomes enriched with PI(4,5)P2, a PIP enriched within plasma membranes. Circular dichroism spectra of the mutant protein were comparable to wildtype, indicating that mutations affected lipid binding, not protein structure. When expressed in HEK293, wildtype a4NT localized to the plasma membrane in fluorescence microscopy and co-purified with the microsomal membrane fraction in cellular fractionation experiments. a4NT mutants showed reduced membrane association and decreased plasma membrane localization. Depletion of PI(4,5)P2 by ionomycin caused reduced membrane association of the WT a4NT protein. Our data suggest that information contained within the soluble a4NT is sufficient for membrane association and that PI(4,5)P2 binding capacity is involved in a4 V-ATPase plasma membrane retention.


Assuntos
ATPases Vacuolares Próton-Translocadoras , Animais , Humanos , Células HEK293 , ATPases Vacuolares Próton-Translocadoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Isoformas de Proteínas/metabolismo , Membrana Celular/metabolismo , Fosfatidilinositóis/metabolismo , Sítios de Ligação , Mamíferos/metabolismo
5.
PLoS Biol ; 17(12): e3000535, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31800587

RESUMO

The mechanisms that govern organelle adaptation and remodelling remain poorly defined. The endo-lysosomal system degrades cargo from various routes, including endocytosis, phagocytosis, and autophagy. For phagocytes, endosomes and lysosomes (endo-lysosomes) are kingpin organelles because they are essential to kill pathogens and process and present antigens. During phagocyte activation, endo-lysosomes undergo a morphological transformation, going from a collection of dozens of globular structures to a tubular network in a process that requires the phosphatidylinositol-3-kinase-AKT-mechanistic target of rapamycin (mTOR) signalling pathway. Here, we show that the endo-lysosomal system undergoes an expansion in volume and holding capacity during phagocyte activation within 2 h of lipopolysaccharides (LPS) stimulation. Endo-lysosomal expansion was paralleled by an increase in lysosomal protein levels, but this was unexpectedly largely independent of the transcription factor EB (TFEB) and transcription factor E3 (TFE3), which are known to scale up lysosome biogenesis. Instead, we demonstrate a hitherto unappreciated mechanism of acute organelle expansion via mTOR Complex 1 (mTORC1)-dependent increase in translation, which appears to be mediated by both S6Ks and 4E-BPs. Moreover, we show that stimulation of RAW 264.7 macrophage cell line with LPS alters translation of a subset but not all of mRNAs encoding endo-lysosomal proteins, thereby suggesting that endo-lysosome expansion is accompanied by functional remodelling. Importantly, mTORC1-dependent increase in translation activity was necessary for efficient and rapid antigen presentation by dendritic cells. Collectively, we identified a previously unknown and functionally relevant mechanism for endo-lysosome expansion that relies on mTORC1-dependent translation to stimulate endo-lysosome biogenesis in response to an infection signal.


Assuntos
Apresentação de Antígeno/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Lisossomos/metabolismo , Fagócitos/metabolismo , Animais , Autofagia , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Feminino , Lipopolissacarídeos/farmacologia , Lisossomos/efeitos dos fármacos , Ativação de Macrófagos , Macrófagos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Fagócitos/efeitos dos fármacos , Fagocitose , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
6.
Traffic ; 20(9): 674-696, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31314175

RESUMO

Mechanisms that control lysosomal function are essential for cellular homeostasis. Lysosomes adapt in size and number to cellular needs but little is known about the underlying molecular mechanism. We demonstrate that the late endosomal/lysosomal multimeric BLOC-1-related complex (BORC) regulates the size of these organelles via PIKfyve-dependent phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2 ] production. Deletion of the core BORC component Diaskedin led to increased levels of PI(3,5)P2 , suggesting activation of PIKfyve, and resulted in enhanced lysosomal reformation and subsequent reduction in lysosomal size. This process required AMP-activated protein kinase (AMPK), a known PIKfyve activator, and was additionally dependent on the late endosomal/lysosomal adaptor, mitogen-activated protein kinases and mechanistic target of rapamycin activator (LAMTOR/Ragulator) complex. Consistently, in response to glucose limitation, AMPK activated PIKfyve, which induced lysosomal reformation with increased baseline autophagy and was coupled to a decrease in lysosomal size. These adaptations of the late endosomal/lysosomal system reversed under glucose replete growth conditions. In summary, our results demonstrate that BORC regulates lysosomal reformation and size in response to glucose availability.


Assuntos
Endossomos/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Autofagia , Células HEK293 , Células HeLa , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Proteínas de Membrana Lisossomal/genética , Sistema de Sinalização das MAP Quinases , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Proteínas/genética , Proteínas/metabolismo
7.
J Cell Sci ; 131(10)2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29661845

RESUMO

Lysosomes receive and degrade cargo from endocytosis, phagocytosis and autophagy. They also play an important role in sensing and instructing cells on their metabolic state. The lipid kinase PIKfyve generates phosphatidylinositol-3,5-bisphosphate to modulate lysosome function. PIKfyve inhibition leads to impaired degradative capacity, ion dysregulation, abated autophagic flux and a massive enlargement of lysosomes. Collectively, this leads to various physiological defects, including embryonic lethality, neurodegeneration and overt inflammation. The reasons for such drastic lysosome enlargement remain unclear. Here, we examined whether biosynthesis and/or fusion-fission dynamics contribute to swelling. First, we show that PIKfyve inhibition activates TFEB, TFE3 and MITF, enhancing lysosome gene expression. However, this did not augment lysosomal protein levels during acute PIKfyve inhibition, and deletion of TFEB and/or related proteins did not impair lysosome swelling. Instead, PIKfyve inhibition led to fewer but enlarged lysosomes, suggesting that an imbalance favouring lysosome fusion over fission causes lysosome enlargement. Indeed, conditions that abated fusion curtailed lysosome swelling in PIKfyve-inhibited cells.


Assuntos
Lisossomos/química , Lisossomos/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HeLa , Humanos , Íons/metabolismo , Lisossomos/genética , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/genética , Fosfatos de Fosfatidilinositol/metabolismo
8.
Traffic ; 18(9): 567-579, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28574194

RESUMO

Compartmentalization of eukaryotic cells into dynamic organelles that exchange material through regulated membrane traffic governs virtually every aspect of cellular physiology including signal transduction, metabolism and transcription. Much has been revealed about the molecular mechanisms that control organelle dynamics and membrane traffic and how these processes are regulated by metabolic, physical and chemical cues. From this emerges the understanding of the integration of specific organellar phenomena within complex, multiscale and nonlinear regulatory networks. In this review, we discuss systematic approaches that revealed remarkable insight into the complexity of these phenomena, including the use of proximity-based proteomics, high-throughput imaging, transcriptomics and computational modeling. We discuss how these methods offer insights to further understand molecular versatility and organelle heterogeneity, phenomena that allow a single organelle population to serve a range of physiological functions. We also detail on how transcriptional circuits drive organelle adaptation, such that organelles may shift their function to better serve distinct differentiation and stress conditions. Thus, organelle dynamics and membrane traffic are functionally heterogeneous and adaptable processes that coordinate with higher-order system behavior to optimize cell function under a range of contexts. Obtaining a comprehensive understanding of organellar phenomena will increasingly require combined use of reductionist and system-based approaches.


Assuntos
Células Eucarióticas/citologia , Organelas/fisiologia , Transporte Proteico/fisiologia , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular/fisiologia , Humanos , Proteômica
9.
Biochem Cell Biol ; 97(4): 387-396, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30403494

RESUMO

Lysophosphatidic acid (LPA) is a small signaling phospholipid that mediates diverse functions including cell proliferation, migration, and survival by engaging LPA-agonized G-protein coupled receptors. Autophagy is a survival mechanism in response to nutrient depletion or organellar damage that encloses idle or damaged organelles within autophagosomes that are then delivered to lysosomes for degradation. However, the relationship between LPA and autophagy is largely unknown. The purpose of this study is to elucidate whether LPA affects autophagy through the ERK1/2 and (or) the Akt-mTOR signaling pathways. In this study, we investigated the effect of LPA on autophagy-regulating pathways in various prostate-derived cancer cells including PC3, LNCaP, and Du145 cells grown in complete medium and exposed to serum-free medium. Using Western blotting and ELISA, we determined that LPA stimulates the ERK and mTOR pathways in complete and serum-free medium. The mTOR pathway led to phosphorylation of S6K and ULK, which respectively stimulates protein synthesis and arrests autophagy. Consistent with this, LPA exposure suppressed autophagy as measured by LC3 maturation and formation of GFP-LC3 puncta. Altogether, these results suggest that LPA suffices to activate mTORC1 and suppress autophagy in prostate cancer cells.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas
10.
Biochem Cell Biol ; 97(1): 21-29, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29791809

RESUMO

Phagocytosis is an evolutionarily conserved process. In Protozoa, phagocytosis fulfills a feeding mechanism, while in Metazoa, phagocytosis diversified to play multiple organismal roles, including immune defence, tissue homeostasis, and remodeling. Accordingly, phagocytes display a high level of plasticity in their capacity to recognize, engulf, and process targets that differ in composition and morphology. Here, we review how phagocytosis adapts to its multiple roles and discuss in particular the effect of target morphology in phagocytic uptake and phagosome maturation.


Assuntos
Fenômenos Fisiológicos Celulares , Fagocitose/fisiologia , Fagossomos/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Humanos , Transdução de Sinais
11.
Cell Microbiol ; 20(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29349904

RESUMO

Lysosomes are acidic and hydrolytic organelles responsible for receiving and digesting cargo acquired during endocytosis, phagocytosis, and autophagy. For macrophages and dendritic cells, the lysosome is kingpin, playing a direct role in microbe killing and antigen processing for presentation. Strikingly, the historic view that lysosomes are homogeneous and static organelles is being replaced with a more elegant paradigm, in which lysosomes are heterogeneous, dynamic, and respond to cellular needs. For example, lysosomes are signalling platforms that integrate stress detection and molecular decision hubs such as the mTOR complex 1 and AMPK to modulate cellular activity. These signals can even adjust lysosome activity by modulating transcription factors such as transcription factor EB (TFEB) and TFE3 that govern lysosome gene expression. Here, we review lysosome remodelling and adaptation during macrophage and dendritic cell stimulation. First, we assess the functional outcomes and regulatory mechanisms driving the dramatic restructuring of lysosomes from globular organelles into a tubular network during phagocyte activation. Second, we discuss lysosome adaptation and scaling in macrophages driven by TFEB and TFE3 stimulation in response to phagocytosis and microbe challenges. Collectively, we are beginning to appreciate that lysosomes are dynamic and adapt to serve phagocyte differentiation in response to microbes and immune stress.


Assuntos
Lisossomos/fisiologia , Fagocitose/fisiologia , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Células Dendríticas/fisiologia , Humanos , Ativação de Macrófagos/fisiologia , Macrófagos/fisiologia
12.
J Immunol ; 199(6): 2096-2105, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28779020

RESUMO

Neutrophils rapidly arrive at an infection site because of their unparalleled chemotactic ability, after which they unleash numerous attacks on pathogens through degranulation and reactive oxygen species (ROS) production, as well as by phagocytosis, which sequesters pathogens within phagosomes. Phagosomes then fuse with lysosomes and granules to kill the enclosed pathogens. A complex signaling network composed of kinases, GTPases, and lipids, such as phosphoinositides, helps to coordinate all of these processes. There are seven species of phosphoinositides that are interconverted by lipid kinases and phosphatases. PIKfyve is a lipid kinase that generates phosphatidylinositol-3,5-bisphosphate and, directly or indirectly, phosphatidylinositol-5-phosphate [PtdIns(5)P]. PIKfyve inactivation causes massive lysosome swelling, disrupts membrane recycling, and, in macrophages, blocks phagosome maturation. In this study, we explored for the first time, to our knowledge, the role of PIKfyve in human and mouse neutrophils. We show that PIKfyve inhibition in neutrophils does not affect granule morphology or degranulation, but it causes LAMP1+ lysosomes to engorge. Additionally, PIKfyve inactivation blocks phagosome-lysosome fusion in a manner that can be rescued, in part, with Ca2+ ionophores or agonists of TRPML1, a lysosomal Ca2+ channel. Strikingly, PIKfyve is necessary for chemotaxis, ROS production, and stimulation of the Rac GTPases, which control chemotaxis and ROS. This is consistent with observations in nonleukocytes that showed that PIKfyve and PtdIns(5)P control Rac and cell migration. Overall, we demonstrate that PIKfyve has a robust role in neutrophils and propose a model in which PIKfyve modulates phagosome maturation through phosphatidylinositol-3,5-bisphosphate-dependent activation of TRPML1, whereas chemotaxis and ROS are regulated by PtdIns(5)P-dependent activation of Rac.


Assuntos
Lisossomos/metabolismo , Neutrófilos/imunologia , Fosfatidilinositol 3-Quinases/metabolismo , Aminopiridinas/farmacologia , Animais , Degranulação Celular , Células Cultivadas , Quimiotaxia , GTP Fosfo-Hidrolases/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Hidrazonas , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Fusão de Membrana , Camundongos , Camundongos Endogâmicos , Morfolinas/farmacologia , Fagocitose , Fagossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Pirimidinas , Espécies Reativas de Oxigênio/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Triazinas/farmacologia
13.
Bioessays ; 39(12)2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28977683

RESUMO

Phosphoinositides (PtdInsPs) modulate a plethora of functions including signal transduction and membrane trafficking. PtdInsPs are thought to consist of seven interconvertible species that localize to a specific organelle, to which they recruit a set of cognate effector proteins. Here, in reviewing the literature, we argue that this model needs revision. First, PtdInsPs can carry a variety of acyl chains, greatly boosting their molecular diversity. Second, PtdInsPs are more promiscuous in their localization than is usually acknowledged. Third, PtdInsP interconversion is likely achieved through kinase-phosphatase enzyme complexes that coordinate their activities and channel substrates without affecting bulk substrate population. Additionally, we contend that despite hundreds of PtdInsP effectors, our attention is biased toward few proteins. Lastly, we recognize that PtdInsPs can act to nucleate coincidence detection at the effector level, as in PDK1 and Akt. Overall, better integrated models of PtdInsP regulation and function are not only possible but needed.


Assuntos
1-Fosfatidilinositol 4-Quinase/genética , Células Eucarióticas/metabolismo , Membranas Intracelulares/metabolismo , Fosfatidilinositóis/metabolismo , Fosfatases de Fosfoinositídeos/genética , 1-Fosfatidilinositol 4-Quinase/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/genética , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Acilação , Animais , Compartimento Celular , Células Eucarióticas/citologia , Regulação da Expressão Gênica , Fosfatidilinositóis/química , Fosfatidilinositóis/classificação , Fosfatases de Fosfoinositídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
14.
Traffic ; 16(9): 1010-26, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26010303

RESUMO

Macrophages internalize and sequester pathogens into a phagosome. Phagosomes then sequentially fuse with endosomes and lysosomes, converting into degradative phagolysosomes. Phagosome maturation is a complex process that requires regulators of the endosomal pathway including the phosphoinositide lipids. Phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2 ), which respectively control early endosomes and late endolysosomes, are both required for phagosome maturation. Inhibition of PIKfyve, which synthesizes PtdIns(3,5)P2 , blocked phagosome-lysosome fusion and abated the degradative capacity of phagosomes. However, it is not known how PIKfyve and PtdIns(3,5)P2 participate in phagosome maturation. TRPML1 is a PtdIns(3,5)P2 -gated lysosomal Ca(2+) channel. Because Ca(2+) triggers membrane fusion, we postulated that TRPML1 helps mediate phagosome-lysosome fusion. Using Fcγ receptor-mediated phagocytosis as a model, we describe our research showing that silencing of TRPML1 hindered phagosome acquisition of lysosomal markers and reduced the bactericidal properties of phagosomes. Specifically, phagosomes isolated from TRPML1-silenced cells were decorated with lysosomes that docked but did not fuse. We could rescue phagosome maturation in TRPML1-silenced and PIKfyve-inhibited cells by forcible Ca(2+) release with ionomycin. We also provide evidence that cytosolic Ca(2+) concentration increases upon phagocytosis in a manner dependent on TRPML1 and PIKfyve. Overall, we propose a model where PIKfyve and PtdIns(3,5)P2 activate TRPML1 to induce phagosome-lysosome fusion.


Assuntos
Fagossomos/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Lisossomos/metabolismo , Macrófagos/metabolismo , Camundongos , Fagocitose , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/metabolismo , Canais de Potencial de Receptor Transitório/genética
15.
Traffic ; 15(10): 1143-63, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25041080

RESUMO

Macrophages eliminate pathogens and cell debris through phagocytosis, a process by which particulate matter is engulfed and sequestered into a phagosome. Nascent phagosomes are innocuous organelles resembling the plasma membrane. However, through a maturation process, phagosomes are quickly remodeled by fusion with endosomes and lysosomes to form the phagolysosome. Phagolysosomes are highly acidic and degradative leading to particle decomposition. Phagosome maturation is intimately dependent on the endosomal pathway, during which diverse cargoes are sorted for recycling to the plasma membrane or for degradation in lysosomes. Not surprisingly, various regulators of the endosomal pathway are also required for phagosome maturation, including phosphatidylinositol-3-phosphate, an early endosomal regulator. However, phosphatidylinositol-3-phosphate can be modified by the lipid kinase PIKfyve into phosphatidylinositol-3,5-bisphosphate, which controls late endosome/lysosome functions. The role of phosphatidylinositol-3,5-bisphosphate in macrophages and phagosome maturation remains basically unexplored. Using Fcγ receptor-mediated phagocytosis as a model, we describe our research showing that inhibition of PIKfyve hindered certain steps of phagosome maturation. In particular, PIKfyve antagonists delayed removal of phosphatidylinositol-3-phosphate and reduced acquisition of LAMP1 and cathepsin D, both common lysosomal proteins. Consistent with this, the degradative capacity of phagosomes was reduced but phagosomes appeared to still acidify. We also showed that trafficking to lysosomes and their degradative capacity was reduced by PIKfyve inhibition. Overall, we provide evidence that PIKfyve, likely through phosphatidylinositol-3,5-bisphosphate synthesis, plays a significant role in endolysosomal and phagosome maturation in macrophages.


Assuntos
Endossomos/metabolismo , Macrófagos/metabolismo , Fagossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Aminopiridinas/farmacologia , Animais , Catepsina D/metabolismo , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Camundongos , Fagocitose , Fosfatos de Fosfatidilinositol/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Transporte Proteico , Receptores de IgG/metabolismo
16.
J Biol Chem ; 290(15): 9919-28, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25713145

RESUMO

Lysosomes and the yeast vacuole are degradative and acidic organelles. Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2), a master architect of endolysosome and vacuole identity, is thought to be necessary for vacuolar acidification in yeast. There is also evidence that PtdIns(3,5)P2 may play a role in lysosomal acidification in higher eukaryotes. Nevertheless, these conclusions rely on qualitative assays of lysosome/vacuole pH. For example, quinacrine, an acidotropic fluorescent base, does not accumulate in the vacuoles of fab1Δ yeast. Fab1, along with its mammalian ortholog PIKfyve, is the lipid kinase responsible for synthesizing PtdIns(3,5)P2. In this study, we employed several assays that quantitatively assessed the lysosomal and vacuolar pH in PtdIns(3,5)P2-depleted cells. Using ratiometric imaging, we conclude that lysosomes retain a pH < 5 in PIKfyve-inhibited mammalian cells. In addition, quantitative fluorescence microscopy of vacuole-targeted pHluorin, a pH-sensitive GFP variant, indicates that fab1Δ vacuoles are as acidic as wild-type yeast. Importantly, we also employed fluorimetry of vacuoles loaded with cDCFDA, a pH-sensitive dye, to show that both wild-type and fab1Δ vacuoles have a pH < 5.0. In comparison, the vacuolar pH of the V-ATPase mutant vph1Δ or vph1Δ fab1Δ double mutant was 6.1. Although the steady-state vacuolar pH is not affected by PtdIns(3,5)P2 depletion, it may have a role in stabilizing the vacuolar pH during salt shock. Overall, we propose a model in which PtdIns(3,5)P2 does not govern the steady-state pH of vacuoles or lysosomes.


Assuntos
Lisossomos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Animais , Linhagem Celular , Fluorometria , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Concentração de Íons de Hidrogênio , Lisossomos/química , Camundongos , Microscopia de Fluorescência , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/química
17.
Traffic ; 13(1): 1-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21736686

RESUMO

Phosphoinositides play an important role in organelle identity by recruiting effector proteins to the host membrane organelle, thus decorating that organelle with molecular identity. Phosphatidylinositol-3,5-bisphos- phate [PtdIns(3,5)P(2) ] is a low-abundance phosphoinositide that predominates in endolysosomes in higher eukaryotes and in the yeast vacuole. Compared to other phosphoinositides such as PtdIns(4,5)P(2) , our understanding of the regulation and function of PtdIns(3,5)P(2) remained rudimentary until more recently. Here, we review many of the recent developments in PtdIns(3,5)P(2) function and regulation. PtdIns(3,5)P(2) is now known to espouse functions, not only in the regulation of endolysosome morphology, trafficking and acidification, but also in autophagy, signaling mediation in response to stresses and hormonal cues and control of membrane and ion transport. In fact, PtdIns(3,5)P(2) misregulation is now linked with several human neuropathologies including Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis. Given the functional versatility of PtdIns(3,5)P(2) , it is not surprising that regulation of PtdIns(3,5)P(2) metabolism is proving rather elaborate. PtdIns(3,5)P(2) synthesis and turnover are tightly coupled via a protein complex that includes the Fab1/PIKfyve lipid kinase and its antagonistic Fig4/Sac3 lipid phosphatase. Most interestingly, many PtdIns(3,5)P(2) regulators play simultaneous roles in its synthesis and turnover.


Assuntos
Fosfatos de Fosfatidilinositol , Animais , Membrana Celular/metabolismo , Regulação da Expressão Gênica , Humanos , Lisossomos/metabolismo , Modelos Biológicos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Fosfatos de Fosfatidilinositol/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatos de Fosfatidilinositol/fisiologia , Transporte Proteico , Transdução de Sinais , Vacúolos/metabolismo
18.
Traffic ; 13(12): 1667-79, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22909026

RESUMO

Lysosomes provide a niche for molecular digestion and are a convergence point for endocytic trafficking, phagosome maturation and autophagy. Typically, lysosomes are small, globular organelles that appear punctate under the fluorescence microscope. However, activating agents like phorbol esters transform macrophage lysosomes into tubular lysosomes (TLs), which have been implicated in retention of pinocytic uptake and phagosome maturation. Moreover, dendritic cells exposed to lipopolysaccharides (LPSs) convert their punctate class II major histocompatibility complex compartment, a lysosome-related organelle, into a tubular network that is thought to be involved in antigen presentation. Other than a requirement for microtubules and kinesin, little is known about the molecular mechanisms that drive lysosome tubulation. Here, we show that macrophage cell lines readily form TLs after LPS exposure, with a requirement for the Rab7 GTPase and its effectors RILP (Rab7-interacting lysosomal protein) and FYCO1 (coiled-coil domain-containing protein 1), which respectively modulate the dynein and kinesin microtubule motor proteins. We also show that Arl8B, a recently identified lysosomal GTPase, and its effector SKIP, are also important for TL biogenesis. Finally, we reveal that TLs are significantly more motile than punctate lysosomes within the same LPS-treated cells. Therefore, we identify the first molecular regulators of lysosome tubulation and we show that TLs represent a more dynamic lysosome population.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Lisossomos/ultraestrutura , Macrófagos/ultraestrutura , Proteínas rab de Ligação ao GTP/metabolismo , Fatores de Ribosilação do ADP/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/metabolismo , Linhagem Celular , Lipopolissacarídeos/farmacologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Forma das Organelas , Monoéster Fosfórico Hidrolases/metabolismo , Fatores de Transcrição/metabolismo , proteínas de unión al GTP Rab7
19.
J Biol Chem ; 288(13): 9363-72, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23389034

RESUMO

Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2) helps control various endolysosome functions including organelle morphology, membrane recycling, and ion transport. Further highlighting its importance, PtdIns(3,5)P2 misregulation leads to the development of neurodegenerative diseases like Charcot-Marie-Tooth disease. The Fab1/PIKfyve lipid kinase phosphorylates PtdIns(3)P into PtdIns(3,5)P2 whereas the Fig4/Sac3 lipid phosphatase antagonizes this reaction. Interestingly, Fab1 and Fig4 form a common protein complex that coordinates synthesis and degradation of PtdIns(3,5)P2 by a poorly understood process. Assembly of the Fab1 complex requires Vac14/ArPIKfyve, a multimeric scaffolding adaptor protein that coordinates synthesis and turnover of PtdIns(3,5)P2. However, the properties and function of Vac14 multimerization remain mostly uncharacterized. Here we identify several conserved C-terminal motifs on Vac14 required for self-interaction and provide evidence that Vac14 likely forms a dimer. We also show that monomeric Vac14 mutants do not support interaction with Fab1 or Fig4, suggesting that Vac14 multimerization is likely the first molecular event in the assembly of the Fab1 complex. Finally, we show that cells expressing monomeric Vac14 mutants have enlarged vacuoles that do not fragment after hyperosmotic shock, which indicates that PtdIns(3,5)P2 levels are greatly abated. Therefore, our observations support an essential role for the Vac14 homocomplex in controlling PtdIns(3,5)P2 levels.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas de Membrana/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Cromatografia Líquida/métodos , Dimerização , Mutação , Doenças Neurodegenerativas/metabolismo , Fosfatos de Fosfatidilinositol/química , Plasmídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Vacúolos/metabolismo
20.
Microbiol Spectr ; 12(1): e0498122, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38051049

RESUMO

IMPORTANCE: Activation of the host transcription factor TFEB helps mammalian cells adapt to stresses such as starvation and infection by upregulating lysosome, autophagy, and immuno-protective gene expression. Thus, TFEB is generally thought to protect host cells. However, it may also be that pathogenic bacteria like Salmonella orchestrate TFEB in a spatio-temporal manner to harness its functions to grow intracellularly. Indeed, the relationship between Salmonella and TFEB is controversial since some studies showed that Salmonella actively promotes TFEB, while others have observed that Salmonella degrades TFEB and that compounds that promote TFEB restrict bacterial growth. Our work provides a path to resolve these apparent discordant observations since we showed that stationary-grown Salmonella actively delays TFEB after infection, while late-log Salmonella is permissive of TFEB activation. Nevertheless, the exact function of this manipulation remains unclear, but conditions that erase the conditional control of TFEB by Salmonella may be detrimental to the microbe.


Assuntos
Macrófagos , Serina-Treonina Quinases TOR , Animais , Camundongos , Serina-Treonina Quinases TOR/metabolismo , Macrófagos/metabolismo , Autofagia/fisiologia , Lisossomos/fisiologia , Salmonella , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA