Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 31(23): 235711, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32109895

RESUMO

Phase transformations of Ge under compression/decompression cycle at room temperature were studied in a diamond anvil cell (DAC) using in situ synchrotron x-ray diffraction, Raman spectroscopy and near infrared absorption techniques. Upon compression similar behavior is observed in nanowires and in bulk although a higher stability is observed in nanowires. The cubic-diamond phase (Ge-3C), the most energetically favorable phase, transforms into the ß-tin metallic phase at high pressure and the reverse Ge-ß-tin to Ge-3C transformation is generally inhibited by kinetics when pressure is released. While the transformation in Ge bulk leads mostly to Ge-ST12 phase, the loading/unloading cycle of Ge nanowires in DAC leads back to Ge-3C, exhibiting unprecedented size effects. A comprehensive characterization of the final states is described.

2.
Nano Lett ; 14(8): 4828-36, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-24988041

RESUMO

We report on a strain-induced phase transformation in Ge nanowires under external shear stresses. The resulted polytype heterostructure may have great potential for photonics and thermoelectric applications. ⟨111⟩-oriented Ge nanowires with standard diamond structure (3C) undergo a phase transformation toward the hexagonal diamond phase referred as the 2H-allotrope. The phase transformation occurs heterogeneously on shear bands along the length of the nanowire. The structure meets the common phenomenological criteria of a martensitic phase transformation. This point is discussed to initiate an on going debate on the transformation mechanisms. The process results in unprecedented quasiperiodic heterostructures 3C/2H along the Ge nanowire. The thermal stability of those 2H domains is also studied under annealing up to 650 °C by in situ TEM.


Assuntos
Germânio/química , Temperatura Alta , Nanofios/química , Nanofios/ultraestrutura , Resistência ao Cisalhamento
3.
Sci Rep ; 6: 25328, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27142097

RESUMO

Interest in the heteroepitaxy of GaAs on Si has never failed in the last years due to the potential for monolithic integration of GaAs-based devices with Si integrated circuits. But in spite of this effort, devices fabricated from them still use homo-epitaxy only. Here we present an epitaxial technique based on the epitaxial lateral overgrowth of micrometer scale GaAs crystals on a thin SiO2 layer from nanoscale Si seeds. This method permits the integration of high quality and defect-free crystalline GaAs on Si substrate and provides active GaAs/Si heterojunctions with efficient carrier transport through the thin SiO2 layer. The nucleation from small width openings avoids the emission of misfit dislocations and the formation of antiphase domains. With this method, we have experimentally demonstrated for the first time a monolithically integrated GaAs/Si diode with high current densities of 10 kA.cm(-2) for a forward bias of 3.7 V. This epitaxial technique paves the way to hybrid III-V/Si devices that are free from lattice-matching restrictions, and where silicon not only behaves as a substrate but also as an active medium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA