Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(42): e202400420, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38563635

RESUMO

A diradical with engineered g-asymmetry was synthesized by grafting a nitroxide radical onto the [Y(Pc)2]⋅ radical platform. Various spectroscopic techniques and computational studies revealed that the electronic structures of the two spin systems remained minimally affected within the diradical system. Fluid-solution Electron Paramagnetic Resonance (EPR) experiments revealed a weak exchange coupling with |J| ~ 0.014 cm-1, subsequently rationalized by CAS-SCF calculations. Frozen solution continuous-wave (CW) EPR experiments showed a complicated and power-dependent spectrum that eluded analysis using the point-dipole model. Pulse EPR manipulations with varying microwave powers, or under varying magnetic fields, demonstrated that different resonances could be selectively enhanced or suppressed, based on their different tipping angles. In particular, Field-Swept Echo-Detected (FSED) spectra revealed absorptions of MW power-dependent intensities, while Field-Swept Spin Nutation (FSSN) experiments revealed two distinct Rabi frequencies. This study introduces a methodology to synthesize and characterize g-asymmetric two-spin systems, of interest in the implementation of spin-based CNOT gates.

2.
Phys Chem Chem Phys ; 26(10): 8043-8050, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38385559

RESUMO

Molecular triangles with competing Heisenberg interactions and significant Dzyaloshinskii-Moriya interactions (DMI) exhibit high environmental sensitivity, making them potential candidates for active elements for quantum sensing. Additionally, these triangles exhibit magnetoelectric coupling, allowing their properties to be controlled using electric fields. However, the manipulation and deposition of such complexes pose significant challenges. This work explores a solution by embedding iron-based molecular triangles in a polymer matrix, a strategy that offers various deposition methods. We investigate how the host matrix alters the magnetic properties of the molecular triangle, with specific focus on the magnetic anisotropy, aiming to advance its practical applications as quantum sensors.

3.
J Am Chem Soc ; 145(4): 2461-2472, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36656167

RESUMO

A mixed-ligand phthalocyanine/porphyrin yttrium(III) radical double-decker complex (DD) was synthesized using the custom-made 5,10,15-tris(4-methoxyphenyl)-20-(4-((trimethylsilyl)ethynyl)phenyl)porphyrin. The trimethylsilyl functionality was then used to couple two such complexes into biradicals through rigid tethers. Glaser coupling was used to synthesize a short-tethered biradical (C1) and Sonogashira coupling to synthesize longer-tethered ones (C2 and C3). Field-swept echo-detected (FSED), saturation recovery, and spin nutation-pulsed electron paramagnetic resonance experiments revealed marked similarities of the magnetic properties of DD with those of the parent [Y(pc)2]• complex, both in the solid state and in CD2Cl2/CDCl3 4:1 frozen glasses. FSED experiments on the biradicals C2 and C3 revealed a spectral broadening with respect to the spectra of DD and [Y(pc)2]• assigned to the effect of dipolar interactions in solution. Apart from the main resonance, satellite features were also observed, which were simulated with dipole-dipole pairs of shortest distances, suggesting spin delocalization on the organic tether. FSED experiments on C1 yielded spectral line shapes that could not be simulated as the integration of the off-resonance echoes was complicated by field-dependent modulations. While, for all dimers, the on-resonance spin nutation experiments yielded Rabi oscillations of the same frequencies, off-resonance nutations on C1 yielded Rabi oscillations that could be assigned to a MS = -1 to MS = 0 transition within a S = 1 multiplet. The DFT calculations showed that the trans conformation of the complexes was significantly more stable than the cis one and that it induced a marked spin delocalization over the rigid organic tether. This "spin leakage" was most pronounced for the shortest biradical C1.

4.
Chemphyschem ; 23(12): e202200213, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35441760

RESUMO

[Gd5 (L)16 (H2 O)8 ](Tf2 N)15 was obtained from reaction of Gd2 O3 with 1-carboxymethyl-3-ethylimidazolium chloride (LHCl). The material was found to be an ionic liquid that freezes to glassy state on cooling to -30 °C. Variable-temperature magnetic studies reveal the presence of weak magnetic intramolecular interactions in the glass. Isothermal variable-field magnetization demonstrates a magnetocaloric effect (MCE), which is the first finding of such an effect in a molecular glass. This MCE is explainable by an uncoupled representation, with a magnetic entropy change of -11.36 J K-1 kg-1 at 1.8 K for a 0-7 T magnetic field change, and with a refrigerant capacity of 125.9 J kg-1 , in the 1.8-50 K interval.

5.
Chemistry ; 27(24): 7022-7042, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33336864

RESUMO

Spin triangles, that is, triangular complexes of half-integer spins, are the oldest molecular nanomagnets (MNMs). Their magnetic properties have been studied long before molecular magnetism was delineated as a research field. This Review presents the history of their study, with references to the parallel development of new experimental investigations and new theoretical ideas used for their interpretation. It then presents an indicative list of spin-triangle families to illustrate their chemical diversity. Finally, it makes reference to recent developments in terms of theoretical ideas and new phenomena, as well as to the relevance of spin triangles to spintronic devices and new physics.

6.
Phys Chem Chem Phys ; 23(36): 20268-20274, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34486006

RESUMO

We built a broadband Electron Paramagnetic Resonance (EPR) spectrometer capable of field- and frequency sweep experiments under field-, microwave amplitude- and microwave frequency-modulation detection modes (HM, AM, and FM, respectively). The spectrometer is based on a coplanar waveguide (CPW) architecture, with the sample being deposited on top of the transmission line. We tested the functionality of this spectrometer by measuring a standard 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH) sample, and complex (NnBu4)2[Cu3(µ3-Cl)2(µ-pz)3Cl3] (1), drop-casted on the CPW. Complex 1 had been previously studied by conventional X-band EPR spectroscopy (Chem. - Eur. J., 2020, 26, 12769-1784), and comparison with the past studies validated the functionality of the spectrometer and confirmed the stability of the sample upon deposition. Moreover, our results highlighted the importance of surface effects and of the orientation of the microwave magnetic component B1 on the lineshapes of the recorded spectra.

7.
Phys Chem Chem Phys ; 23(26): 14415-14421, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34180472

RESUMO

A 16-line pattern has been theoretically predicted, but hitherto not reported, for the Electron Paramagnetic Resonance (EPR) spectrum of antiferromagnetically coupled CuII triangles experiencing isotropic exchange of isosceles magnetic symmetry. Now, the crystallization of such a triangular species and its X-ray structure determination in a polar space group, R3 (No. 146), has enabled its single crystal EPR study. Its detailed magnetic susceptibility, and X- and Q-band, powder and single crystal EPR spectroscopic study reveals the effect of molecular structure and of Dzyaloshinskii-Moriya interactions (DMI) on the g‖, g⊥ and A‖ parameters of the spectrum; DMI is considered for the first time in such a context. Moreover, careful analysis of the spectrum allows the deconvolution of two slightly different cocrystallized magnetic species.

8.
Chemistry ; 26(56): 12769-12784, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-32343007

RESUMO

Previously reported ferromagnetic triangles (NnBu4 )2 [Cu3 (µ3 -Cl)2 (µ-4-NO2 -pz)3 Cl3 ] (1), (PPN)2 [Cu3 (µ3 -Cl)2 (µ-pz)3 Cl3 ] (2), (bmim)2 [Cu3 (µ3 -Cl)2 (µ-pz)3 Cl3 ] (3) and newly reported (PPh4 )2 [Cu3 (µ3 -Cl)2 (µ-4-Ph-pz)3 Cl3 ] (4) were studied by magnetic susceptometry, electron paramagnetic resonance (EPR) spectroscopy and ab initio calculations to assess the origins of their ferromagnetism and of the magnetic anisotropy of their ground S=3/2 state (PPN+ =bis(triphenylphosphine)iminium, bmim+ =1-butyl-3-methylbenzimidazolium, pz- =pyrazolate). Ab initio studies revealed the d z 2 character of the magnetic orbitals of the compressed trigonal bipyramidal copper(II) ions. Ferromagnetic interactions were attributed to weak orbital overlap via the pyrazolate bridges. From the wavefunctions expansions, the ratios of the magnetic couplings were determined, which were indeterminate by magnetic susceptometry. Single-crystal EPR studies of 1 were carried out to extend the spin Hamiltonian with terms which induce zero-field splitting (zfs), namely dipolar interactions, anisotropic exchange and Dzyaloshinskii-Moriya interactions (DMI). The data were treated through both a giant-spin model and through a multispin exchange-coupled model. The latter indicated that ≈62 % of the zfs is due to anisotropic and ≈38 % due to dipolar interactions. The powder EPR data of all complexes were fitted to a simplified form of the multispin model and the anisotropic and dipolar contributions to the ground state zfs were estimated.

9.
J Am Chem Soc ; 141(50): 19765-19775, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31762270

RESUMO

Two molecular spin qubits are studied with pulsed electron paramagnetic resonance (EPR) spectroscopy under electric fields to assess their magnetoelectric (ME) couplings and electric spin control. [Fe3O(PhCOO)6(py)3]ClO4·py (Fe3) is characterized by strong Dzyaloshinskii-Moriya interactions (DMI) which induce important magnetoanisotropy, whereas the DMI in [Cr3O(PhCOO)6(py)3]ClO4·0.5py (Cr3) is 1-2 orders of magnitude weaker. Fe3 is observed to demonstrate a clear ME effect, whose intensity shows an unprecedented dependence on the molecular orientation within the electric field E (electroanisotropy) and on the relative orientations of the molecular z axis, the Zeeman field B0 and E (magnetoelectric anisotropy). The electric control in Fe3 is shown to be coherent, and the ME effect exhibits complex dynamics characterized by saturation and oscillatory effects. On the other hand, Cr3 exhibits no discernible ME effect, which correlates well with its negligible DMI.

10.
Inorg Chem ; 58(11): 7537-7544, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31091082

RESUMO

Two trinuclear CuII pyrazolato complexes with a Cu3(µ3-E)-core (E = O2- or OH-) and terminal nitrite ligands in two coordination modes were characterized crystallographically, spectroscopically, and electrochemically. One-electron oxidation of the µ3-O species produces a delocalized, mixed-valent, formally CuII2CuIII-nitrite, but no nitrate. In contrast, under reducing conditions-addition of PhSH as an electron and proton donor-both complexes mediate the reduction of nitrite, releasing NO.

11.
Phys Chem Chem Phys ; 21(35): 19575-19584, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31464324

RESUMO

Spectral broadenings due to Dzyaloshinskii-Moriya interactions (DMI) were assessed with respect to the decoherence they induce through increased spin-spin interactions, as the role of DMI in developing magnetoelectric spin-chirality qubits is gaining recognition. The structurally related spin triangles [Fe3O(PhCOO)6(py)3]ClO4·py (Fe3) and [Cr3O(PhCOO)6(py)3]ClO4·0.5py (Cr3) were studied as frozen py-d5 solutions with various pulsed Electron Paramagnetic Resonance (EPR) spectroscopy experiments, and under identical experimental conditions. Field-swept Hahn echo experiments revealed a match with continuous-wave (CW) spectra, while variable-temperature saturation/inversion recovery and Hahn echo decay experiments were used to extract the thermal evolutions of the spin-lattice relaxation and phase-memory times (T1 and Tm, respectively). Nutation experiments revealed Rabi oscillations demonstrating that the spins of the complexes could be coherently manipulated. Careful comparisons of Tm times confirmed hyperfine interactions with the magnetic nuclei of the metal ions as an intrinsic source of decoherence. Comparisons of Rabi damping times revealed that DMI-induced spectral broadenings play a discernible but moderate role as an extrinsic source of decoherence for the nutation experiments and that they are not particularly detrimental to spin manipulations.

12.
Chemistry ; 24(56): 14896-14900, 2018 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-30136321

RESUMO

Single-crystal EPR experiments show that the highly symmetric antiferromagnetic half-integer spin triangle [Fe3 O(O2 CPh)6 (py)3 ]ClO4 ⋅py (1, py=pyridine) possesses a ST =1/2 ground state exhibiting high g-anisotropy due to antisymmetric exchange (Dzyaloshinskii-Moriya) interactions. EPR experiments under static electric fields parallel to the triangle's plane (i.e., perpendicular to the magnetic z-axis) reveal that this ground state couples to externally applied electric fields. This magnetoelectric coupling causes an increase in the intensity of the intradoublet EPR transition and does not affect its resonance position when B0 ∥z. The results are discussed on the basis of theoretical models correlating the spin chirality of the ground state with the magnetoelectric effect.

13.
Inorg Chem ; 57(21): 13259-13269, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30353727

RESUMO

Magnetic susceptibility and X-band electron paramagnetic resonance (EPR) studies have been carried out on the highly symmetric [Cr3O(PhCOO)6(py)3](ClO4)·0.5py (1; py = pyridine), whose cation exhibits a D3 h crystallographically imposed molecular symmetry. While magnetic susceptibility data can be interpreted with an equilateral magnetic model described by the effective multispin Hamiltonian H = -2 J(S1·S2 + S2·S3 + S3·S1), EPR data require an isosceles model described by the multispin Hamiltonian H = -2 J( S1· S2 + S2· S3) - 2 J' S3· S1, where Δ J = J - J' ≠ 0. Moreover, EPR data reveal the interplay of antisymmetric exchange (or Dzyaloshinskii-Moriya) interactions, described by a 2G(S1 × S2 + S2 × S3 + S3 × S1) term, which induce significant anisotropy to the ST = 1/2 ground state of 1, as well as an important broadening of the g⊥ resonance ( g strain). Through careful analysis of these data and in conjunction with neutron scattering data, this g strain can be deconvoluted into distributions of the individual spin-Hamiltonian parameters Δ J and |G|. This method of analysis provides simultaneous estimates of the central values and distribution profiles of the spin-Hamiltonian parameters, which are shown not to be described by monodisperse values.

14.
Phys Chem Chem Phys ; 20(25): 17234-17244, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29901059

RESUMO

The X-ray crystal structure of the CuII complex [Cu3(µ3-OH)(µ-pz)3(PhCOO)3]- (pz- = pyrazolato anion) shows an isosceles triangular core, further forming a hexanuclear H-bonded aggregate. Cleavage of the H-bonds in solution results in isolated trinuclear species. Analysis of variable temperature magnetic susceptibility data of a powder sample shows an antiferromagnetically-coupled Cu3-core with a doublet ground state and isotropic exchange parameters (Jave = -355 cm-1, Hiso = -JijSiSj). The fitting of magnetic data requires the inclusion of antisymmetric exchange, AE (HAE = Gij·Si × Sj) with Gz = 31.2 cm-1 and no detectable inter-Cu3 isotropic exchange. X-band EPR spectroscopy in a frozen tetrahydrofuran solution of the compound indicates isolated Cu3-species with g‖,eff = 2.25, g⊥,eff = 1.67. The small value of g⊥,eff (≪2.0) is consistent with the presence of AE in agreement with the analysis of the magnetic measurements. The parallel component exhibits a hyperfine pattern corresponding to one I = 3/2 nucleus with A‖ = 425 MHz. This implies a specific exchange coupling scheme obeying the order |J12| = |J13| < |J23| consistent with the crystallographically determined two long and one short CuCu distances. The role of AE in modulating the hyperfine parameters in antiferromagnetic Cu3 clusters is studied. EPR spectra at X- and Q-band were performed with powder samples of the cluster at liquid helium temperatures. The spectra in both bands are consistent with two interacting Sa,b = 1/2 species in the point dipolar approximation. Fitting of the spectra reveals that each spin is characterized by g‖ = 2.24, g⊥ = 1.65 which is in agreement with an isolated Cu3 cluster in the ground state. The determined inter-spin distance of 4.4-4.5 Å is very close to the distance between the Cu(1) and Cu(1)' sites of the two trimeric units as imposed crystallographically (4.3 Å). This constitutes further verification of the specific exchange coupling scheme within each trimer. Magnetostructural correlations previously adopted for antiferromagnetically coupled Cu3 clusters are discussed in the light of the combined magnetic measurements and EPR spectroscopy.

15.
Inorg Chem ; 56(2): 762-772, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28045513

RESUMO

Complex [Fe3O(O2CPh)6(py)3]ClO4·py (1) crystallizes in the hexagonal P63/m space group, and its cation exhibits a crystallographically imposed D3h symmetry due to a C3 axis passing through the oxide of its {Fe3O}7+ core. Single-crystal unit-cell studies carried out with synchrotron radiation confirmed that this symmetry is retained down to 4.5 K; a full crystal structure determination carried out at 90 K resolved the previously reported disorder of the perchlorate anion. Magnetic susceptibility and electron paramagnetic resonance (EPR) data for complex 1 were interpreted with a model considering the retention of the threefold crystallographic symmetry while predicting a lowering of the magnetic symmetry. This model considered the effects of atomic vibrations of the central oxide on the magnetic properties of the complex by incorporating these movements into the spin Hamiltonian through angular overlap considerations of the atomic orbitals; no ad hoc magnetic Jahn-Teller effect was considered. The derived magnetostructural correlations achieved an improvement in the interpretation of the magnetic susceptibility data using the same number of free variables. They also improved the simulations of the EPR data, which exhibit a complicated set of at least five axial resonances; improved simulations were achieved using only two spectral components. Due to the thermal effects on the oxide vibrations, the model predicts a temperature dependence of the magnetic coupling J, which should not be viewed as a constant but as a variable.

16.
J Magn Reson ; 349: 107406, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36841142

RESUMO

3,3',3''-(Benzene-1,3,5-triyl)tris(1-phenyl-1H-benzo[e][1,2,4]triazin-4-yl) (1) is a C3-symmetrical triradical comprised of three Blatter radical units connected at the 1, 3, 5 positions of a central trimethylenebenzene core. This triradical has an excellent air, moisture, and thermal stability. Single-crystal XRD indicates that triradical 1 adopts a propeller-like geometry with the benzotriazinyl moieties twisted by 174.1(2)° and packs in 1D chains along the c axis to form an extensive network of weak intermolecular interactions. Frozen solution continuous wave (CW) EPR spectra and variable-temperature field-sweep echo-detected (FSED) spectra revealed an intramolecular ferromagnetic exchange within the spin system, supporting a quartet S = 3/2 ground state. DFT calculations further supported these experimental findings.

17.
Inorg Chem ; 50(12): 5646-54, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21574605

RESUMO

The synthesis and properties are reported of a new Fe(7) cluster obtained from the reaction of ferrocene-1,1'-dicarboxylic acid (fdcH(2)) with FeCl(2)·4H(2)O in MeOH under ambient light conditions. The compound is the mixed-anion salt [Fe(7)O(3)(OMe)(fdc)(6)(MeOH)(3)][FeCl(4)]Cl(2) (1; 8Fe(III)), containing six (fdc(n-)) groups as peripheral ligands. The cation of 1 has virtual C(3) symmetry and contains a central [Fe(4)(µ(3)-O)(3)(µ(3)-OMe)](5+) cubane unit whose three oxide ions each become µ(4) by attaching to a fourth Fe atom outside the cubane. The resulting [Fe(7)(µ(3)-O(3))(µ(3)-OMe)](14+) core is surrounded by six fdc(n-) (n = 1, 2) groups, which divide into two sets by virtual symmetry. The blue color of the complex suggested that some of these ligands are in their oxidized fdc(-) ferricenium (Fe(III)) state, and various data point to there being one fdc(-) ligand in the compound, the initial example of the group acting as a ligand in inorganic chemistry. Variable-temperature, solid-state DC and AC susceptibility measurements reveal the cation to be antiferromagnetically coupled, as expected for high-spin Fe(III), and to have an S = 2 ground state, consistent with an S = (5)/(2) Fe(7) inner core coupled antiferromagnetically to the one paramagnetic fdc(-) (S = (1)/(2)) ligand. Complex 1 displays multiple reductions and oxidations when investigated by electrochemistry in MeCN. (57)Fe Mössbauer spectroscopy supports the presence of only five fdc(2-) ligands, but cannot resolve the signals from the various Fe(III) sites.

18.
Chem Commun (Camb) ; 57(87): 11505-11508, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34652347

RESUMO

FID-detected nutations of the antiferromagnetic crystal form of [Y(pc)2]˙ demonstrated that its radical spin can be coherently driven in its magnetically condensed undeuterated phase and at room temperature. Liquid-helium nutations revealed additional Rabi oscillations assigned to transitions within higher-multiplicity states of finite-sized chain fragments.

19.
JACS Au ; 1(11): 1937-1948, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34841411

RESUMO

A dimeric Cu(II) complex [Cu(II)2L2(µ2-Cl)Cl] (1) built from an asymmetric tridentate ligand (2-(((2-aminocyclohexyl)imino)methyl)-4,6-di-tert-butylphenol) and weakly coordinating anions has been synthesized and structurally characterized. In dichloromethane solution, 1 exists in a monomeric [Cu(II)LCl] (1') (85%)-dimeric (1) (15%) equilibrium, and cyclic voltammetry (CV) and electron paramagnetic resonance (EPR) studies indicate structural stability and redox retention. Addition of phenylacetylene to the CH2Cl2 solution populates 1' and leads to the formation of a transient radical species. Theoretical studies support this notion and show that the radical initiates an alkyne C-H bond activation process via a four-membered ring (Cu(II)-O···H-Calkyne) intermediate. This unusual C-H activation method is applicable for the efficient synthesis of propargylamines, without additives, within 16 h, at low loadings and in noncoordinating solvents including late-stage functionalization of important bioactive molecules. Single-crystal X-ray diffraction studies, postcatalysis, confirmed the framework's stability and showed that the metal center preserves its oxidation state. The scope and limitations of this unconventional protocol are discussed.

20.
Inorganica Chim Acta ; 363(10): 2279-2286, 2010 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32226111

RESUMO

The complexes [Cu2(o-NO2-C6H4COO)4(PNO)2] (1), [Cu2(C6H5COO)4(2,2'-BPNO)] n (2), [Cu2(C6H5COO)4(4,4'-BPNO)] n (3), [Cu(p-OH-C6H4COO)2(4,4'-BPNO)2·H2O] n (4), (where PNO = pyridine N-oxide, 2,2'-BPNO = 2,2'-bipyridyl-N,N'-dioxide, 4,4'-BPNO = 4,4'-bipyridyl-N,N'-dioxide) are prepared and characterized and their magnetic properties are studied as a function of temperature. Complex 1 is a discrete dinuclear complex while complexes 2-4 are polymeric of which 2 and 3 have paddle wheel repeating units. Magnetic susceptibility measurements from polycrystalline samples of 1-4 revealed strong antiferromagnetic interactions within the {Cu2}4+ paddle wheel units and no discernible interactions between the units. The complex 5, [Cu(NicoNO)2·2H2O] n ·4nH2O, in which the bridging ligand to the adjacent copper(II) ions is nicotinate N-oxide (NicoNO) the transmitted interaction is very weakly antiferromagnetic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA