Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139083

RESUMO

Traditional research in inflammatory dermatoses has relied on animal models and reconstructed human epidermis to study these conditions. However, these models are limited in replicating the complexity of real human skin and reproducing the intricate pathological changes in skin barrier components and lipid profiles. To address this gap, we developed experimental models that mimic various human inflammatory skin phenotypes. Human ex vivo skins were stimulated with various triggers, creating models for inflammation-induced angiogenesis, irritation response, and chronic T-cell activation. We assessed the alterations in skin morphology, cellular infiltrates, cytokine production, and epidermal lipidomic profiles. In the pro-angiogenesis model, we observed increased mast cell degranulation and elevated levels of angiogenic growth factors. Both the irritant and chronic inflammation models exhibited severe epidermal disruption, along with macrophage infiltration, leukocyte exocytosis, and heightened cytokine levels. Lipidomic analysis revealed minor changes in the pro-angiogenesis model, whereas the chronic inflammation and irritant models exhibited significant decreases in barrier essential ceramide subclasses and a shift toward shorter acyl chain lengths (

Assuntos
Irritantes , Dermatopatias , Animais , Humanos , Irritantes/farmacologia , Pele/metabolismo , Epiderme/metabolismo , Dermatopatias/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo
2.
Front Aging ; 4: 1304705, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38362046

RESUMO

Introduction: During adulthood, the skin microbiota can be relatively stable if environmental conditions are also stable, yet physiological changes of the skin with age may affect the skin microbiome and its function. The microbiome is an important factor to consider in aging since it constitutes most of the genes that are expressed on the human body. However, severity of specific aging signs (one of the parameters used to measure "apparent" age) and skin surface quality (e.g., texture, hydration, pH, sebum, etc.) may not be indicative of chronological age. For example, older individuals can have young looking skin (young apparent age) and young individuals can be of older apparent age. Methods: Here we aim to identify microbial taxa of interest associated to skin quality/aging signs using a multi-study analysis of 13 microbiome datasets consisting of 16S rRNA amplicon sequence data and paired skin clinical data from the face. Results: We show that there is a negative relationship between microbiome diversity and transepidermal water loss, and a positive association between microbiome diversity and age. Aligned with a tight link between age and wrinkles, we report a global positive association between microbiome diversity and Crow's feet wrinkles, but with this relationship varying significantly by sub-study. Finally, we identify taxa potentially associated with wrinkles, TEWL and corneometer measures. Discussion: These findings represent a key step towards understanding the implication of the skin microbiota in skin aging signs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA