Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Vaccine ; 34(27): 3093-3101, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27154391

RESUMO

Heparan sulfates (HS) are carbohydrate moieties of HS proteoglycans (HSPGs). They often represent alternative attachment points for proteins or microorganisms targeting receptors. HSPGs, which are ubiquitously expressed, thereby participate in numerous biological processes. We previously showed that MHC class II-restricted antigen presentation is increased when antigens are coupled to HS ligands, suggesting that HSPGs might contribute to adaptive immune responses. Here, we examined if HSPG targeting influences other aspects of immune responses. We found that coupling of an HS ligand to the antigen increases antigen presentation to CD4(+) and CD8(+) T-cells after antigen targeting to membrane immunoglobulins or to MHC-II molecules. Moreover, this increased stimulating capacity correlates with an enhanced CD8(+) immune response in mice. Last, animals control more effectively the growth of Ova-expressing tumour cells when they are immunized with an Ova construct targeting HSPGs and MHC-II molecules. Our results indicate that ubiquitous molecules can influence both MHC class I- and MHC class II-restricted antigen presentation and behave as co-receptors during T-cell stimulation. Moreover, they suggest that tumour-antigens endowed with the ability to target both HSPGs and MHC-II molecules could be of value to increase CD8(+) immune response and control tumour-growth, opening new perspectives for the design of highly immunogenic protein-based vaccines.


Assuntos
Apresentação de Antígeno , Linfócitos T CD8-Positivos/imunologia , Proteoglicanas de Heparan Sulfato/imunologia , Imunidade Adaptativa , Animais , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Ativação Linfocitária , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão/imunologia
2.
Methods Mol Biol ; 267: 101-12, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15269418

RESUMO

The methods described in this article are relative to the use of a positive cloning/screening recombinant system for the generation in Escherichia coli of foreign proteins fused to a highly active bacterial alkaline phosphatase (PhoA) variant as reporter enzyme. Appropriate insertion of the DNA encoding the foreign peptides, proteic domains, or proteins between codons +6 and +7 of the phoa gene restores the initial frame of the phoa gene in the vector. Consequently, only recombinant clones appear as blue colonies when plating onto an agar medium containing a chromogenic substrate for PhoA. The presence of an intact PhoA signal peptide yields to a systematic secretion of the fusion proteins into the periplasm where the PhoA dimerises to its active form, and disulfides can be formed if necessary. The resultant PhoA-tagged proteins are particularly convenient novel tools that can be used in a wide range of applications, including expression, epitope mapping, histochemistry, immunoblotting, mutant analysis, and competition or sandwich ELISAs. Expression of an scFv antibody fragment derived from an IgG2a/kappa immunoglobulin specific for curaremimetic toxins from snake (named M-alpha2-3), will be used to illustrate the methods utilized for its cloning, expression in E.coli, extraction, and functional characterization.


Assuntos
Fosfatase Alcalina/genética , Clonagem Molecular/métodos , Escherichia coli/genética , Proteínas Recombinantes de Fusão/genética , Fosfatase Alcalina/biossíntese , Western Blotting/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Escherichia coli/metabolismo , Região Variável de Imunoglobulina/biossíntese , Região Variável de Imunoglobulina/genética , Proteínas Recombinantes de Fusão/biossíntese
3.
Protein Eng Des Sel ; 26(11): 725-34, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24006372

RESUMO

A single strategy to select RNA polymerase from bacteriophage T7 (T7 RNAP) mutants in Escherichia coli with enhanced thermostability or enzymatic activity is described. T7 RNAP has the ability to specifically transcribe genes under control of T7 phage promoter. By using random mutagenesis of the T7 RNAP gene in combination with an appropriate screening at 25 and 42°C, we have generated and selected E.coli clones with temperature-sensitive phenotype in the presence of chloramphenicol. The resistance to chloramphenicol used to select these clones results from expression control of the chloramphenicol acetyl transferase gene by the T7 promoter. In a second phase, and using the thermosensitive T7 RNAP variants as template, a new round of random mutagenesis was performed. Combined to an appropriate screening strategy, 11 mutations (second-site T7 RNAP revertants) that restore the initial resistance to chloramphenicol at 42°C were identified. Nine of these mutations increase the thermal resistance of the wild-type T7 RNA. They include the five mutations previously described using different approaches and four novel mutations. One improves T7 RNA catalytic activity and one has no positive effect on the natural enzyme but increases the activity of some combined mutants. Additive effects of mutations amount to an increase of as much as 10°C in T1/2 compared with the wild-type enzyme and up to a 2-fold activity enhancement.


Assuntos
RNA Polimerases Dirigidas por DNA , Proteínas Virais , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Estabilidade Enzimática/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Temperatura Alta , Modelos Moleculares , Mutação/genética , Fenótipo , Plasmídeos/genética , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
Anal Chim Acta ; 736: 85-91, 2012 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-22769009

RESUMO

A rapid, sensitive chemiluminescent enzyme immunoassay (CLEIA) for ractopamine (RAC) based on a single-chain variable fragment (scFv)-alkaline phosphatase (AP) fusion protein was developed. The scFv gene was prepared by cloning the heavy- and light-chain variable region genes (V(H) and V(L)) from hybridoma cell line AC2, which secretes antibodies against RAC, and assembling V(H) and V(L) genes with a linker by means of splicing overlap extension polymerase chain reaction. The resulting scFv gene was inserted into the expression vector pLIP6/GN containing AP to produce the fusion protein in Escherichia coli strain BL21. The purified scFv-AP fusion protein was used to develop a direct competitive CLEIA (dcCLEIA) protocol for detection of RAC. The average concentration required for 50% inhibition of binding and the limit of detection of the assay were 0.25±0.03 and 0.02±0.004 ng mL(-1), respectively, and the linear response range extended from 0.05 to 1.45 ng mL(-1). The assay was 10 times as sensitive as the corresponding enzyme-linked immunosorbent assay based on the same fusion protein. Cross-reactivity studies showed that the fusion protein did not cross react with RAC analogs. DcCLEIA was used to analyze RAC spiked pork samples, and the validation was confirmed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS). The results showed a good correlation between the data of dc-CLEIA and HPLC-MS (R(2)>0.99), indicating that the assay was an efficient analytical method for monitoring food safety.


Assuntos
Fosfatase Alcalina/química , Contaminação de Alimentos/análise , Técnicas Imunoenzimáticas , Carne/análise , Fenetilaminas/análise , Animais , Cromatografia Líquida de Alta Pressão , Fragmentos de Imunoglobulinas/química , Proteínas Recombinantes de Fusão/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Suínos , Espectrometria de Massas em Tandem
5.
J Proteome Res ; 4(6): 2137-47, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16335960

RESUMO

Many studies that aim to characterize the proteome structurally or functionally require the production of pure protein in a high-throughput format. We have developed a fast and flexible integrated system for cloning, protein expression in Escherichia coli, solubility screening and purification that can be completely automated in a 96-well microplate format. We used recombination cloning in custom-designed vectors including (i) a (His)(6) tag-encoding sequence, (ii) a variable solubilizing partner gene, (iii) the DNA sequence corresponding to the TEV protease cleavage site, (iv) the gene (or DNA fragment) of interest, (v) a suppressible amber stop codon, and (vi) an S.tag peptide-encoding sequence. First, conditions of bacterial culture in microplates (250 microL) were optimized to obtain expression and solubility patterns identical to those obtained in a 1-L flask (100-mL culture). Such conditions enabled the screening of various parameters in addition to the fusion partners (E. coli strains, temperature, inducer...). Second, expression of fusion proteins in amber suppressor strains allowed quantification of soluble and insoluble proteins by fluorescence through the detection of the S.tag. This technique is faster and more sensitive than other commonly used methods (dot blots, Western blots, SDS-PAGE). The presence of the amber suppressor tRNA was shown to affect neither the expression pattern nor the solubility of the target proteins. Third, production of the most interesting soluble fusion proteins, as detected by our screening method, could be performed in nonsuppressor strains. After cleavage with the TEV protease, the target proteins were obtained in a native form with a unique additional N-terminal glycine.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica , Proteômica/métodos , Western Blotting , Clonagem Molecular , Códon de Terminação , DNA/química , Eletroforese em Gel de Poliacrilamida , Proteínas de Escherichia coli/química , Genes Supressores , Vetores Genéticos , Glutationa Transferase/metabolismo , Proteínas/química , Proteoma , RNA de Transferência/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Recombinação Genética , Solubilidade , Espectrometria de Fluorescência , Temperatura
6.
Protein Expr Purif ; 38(1): 69-78, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15477084

RESUMO

BgK, a sea anemone peptide consisting of 37 amino acid residues and 3 disulfide bonds, blocks voltage-gated potassium (Kv1) channels. Here, we report a method for producing tagged BgK in Escherichia coli, as a soluble cytoplasmic protein. First, using peptidic synthesis, we show that addition of a 15 residue peptide (S.Tag) at the BgK C-terminus does not affect its biological activity. Then, a synthetic DNA sequence encoding BgK was constructed and cloned to produce a BgK-S.Tag hybrid in the cytoplasm of E. coli. The presence of S.Tag did not only facilitate detection, quantification, and purification of the recombinant protein, but also increased the production yield by more than two orders of magnitude. Moreover, use of an E. coli OrigamiB(DE3)pLacI strain also increased production; up to 5.8-7.5mg of BgK-S.Tag or mutated BgK(F6A)-S.Tag was produced per liter of culture and could be functionally characterized in crude extracts. Using a two-step purification procedure (affinity chromatography and RP-HPLC), we obtained 1.8-2.8mg of purified recombinant protein per liter of culture. The recombinant peptides displayed functional properties similar to those of native BgK or BgK(F6A).


Assuntos
Venenos de Cnidários/biossíntese , Citoplasma/metabolismo , Escherichia coli/metabolismo , Bloqueadores dos Canais de Potássio/metabolismo , Anêmonas-do-Mar/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Eletrofisiologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA