Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nat Immunol ; 23(12): 1749-1762, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36456736

RESUMO

Microglia, the parenchymal brain macrophages of the central nervous system, have emerged as critical players in brain development and homeostasis. The immune functions of these cells, however, remain less well defined. We investigated contributions of microglia in a relapsing-remitting multiple sclerosis paradigm, experimental autoimmune encephalitis in C57BL/6 x SJL F1 mice. Fate mapping-assisted translatome profiling during the relapsing-remitting disease course revealed the potential of microglia to interact with T cells through antigen presentation, costimulation and coinhibition. Abundant microglia-T cell aggregates, as observed by histology and flow cytometry, supported the idea of functional interactions of microglia and T cells during remission, with a bias towards regulatory T cells. Finally, microglia-restricted interferon-γ receptor and major histocompatibility complex mutagenesis significantly affected the functionality of the regulatory T cell compartment in the diseased central nervous system and remission. Collectively, our data establish critical non-redundant cognate and cytokine-mediated interactions of microglia with CD4+ T cells during autoimmune neuroinflammation.


Assuntos
Encefalomielite Autoimune Experimental , Camundongos , Animais , Microglia , Linfócitos T Reguladores/patologia , Camundongos Endogâmicos C57BL , Comunicação Celular
2.
Immunity ; 57(6): 1225-1242.e6, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38749446

RESUMO

Classical monocytes (CMs) are ephemeral myeloid immune cells that circulate in the blood. Emerging evidence suggests that CMs can have distinct ontogeny and originate from either granulocyte-monocyte- or monocyte-dendritic-cell progenitors (GMPs or MDPs). Here, we report surface markers that allowed segregation of murine GMP- and MDP-derived CMs, i.e., GMP-Mo and MDP-Mo, as well as their functional characterization, including fate definition following adoptive cell transfer. GMP-Mo and MDP-Mo yielded an equal increase in homeostatic CM progeny, such as blood-resident non-classical monocytes and gut macrophages; however, these cells differentially seeded various other selected tissues, including the dura mater and lung. Specifically, GMP-Mo and MDP-Mo differentiated into distinct interstitial lung macrophages, linking CM dichotomy to previously reported pulmonary macrophage heterogeneity. Collectively, we provide evidence for the existence of two functionally distinct CM subsets in the mouse that differentially contribute to peripheral tissue macrophage populations in homeostasis and following challenge.


Assuntos
Diferenciação Celular , Macrófagos , Monócitos , Animais , Monócitos/imunologia , Monócitos/citologia , Camundongos , Diferenciação Celular/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Pulmão/citologia , Pulmão/imunologia , Homeostase , Camundongos Endogâmicos C57BL , Células Dendríticas/imunologia , Linhagem da Célula , Transferência Adotiva
3.
Nat Immunol ; 19(6): 636-644, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29777220

RESUMO

Transcriptome profiling is widely used to infer functional states of specific cell types, as well as their responses to stimuli, to define contributions to physiology and pathophysiology. Focusing on microglia, the brain's macrophages, we report here a side-by-side comparison of classical cell-sorting-based transcriptome sequencing and the 'RiboTag' method, which avoids cell retrieval from tissue context and yields translatome sequencing information. Conventional whole-cell microglial transcriptomes were found to be significantly tainted by artifacts introduced by tissue dissociation, cargo contamination and transcripts sequestered from ribosomes. Conversely, our data highlight the added value of RiboTag profiling for assessing the lineage accuracy of Cre recombinase expression in transgenic mice. Collectively, this study indicates method-based biases, reveals observer effects and establishes RiboTag-based translatome profiling as a valuable complement to standard sorting-based profiling strategies.


Assuntos
Microglia , RNA Mensageiro/análise , Análise de Sequência de RNA/métodos , Animais , Imunoprecipitação/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ribossomos
4.
Immunity ; 54(1): 176-190.e7, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33333014

RESUMO

The developmental and molecular heterogeneity of tissue macrophages is unravelling, as are their diverse contributions to physiology and pathophysiology. Moreover, also given tissues harbor macrophages in discrete anatomic locations. Functional contributions of specific cell populations can in mice be dissected using Cre recombinase-mediated mutagenesis. However, single promoter-based Cre models show limited specificity for cell types. Focusing on macrophages in the brain, we establish here a binary transgenic system involving complementation-competent NCre and CCre fragments whose expression is driven by distinct promoters: Sall1ncre: Cx3cr1ccre mice specifically target parenchymal microglia and compound transgenic Lyve1ncre: Cx3cr1ccre animals target vasculature-associated macrophages, in the brain, as well as other tissues. We imaged the respective cell populations and retrieved their specific translatomes using the RiboTag in order to define them and analyze their differential responses to a challenge. Collectively, we establish the value of binary transgenesis to dissect tissue macrophage compartments and their functions.


Assuntos
Encéfalo/citologia , Sistema Nervoso Central/fisiologia , Integrases/metabolismo , Macrófagos/fisiologia , Microglia/fisiologia , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Especificidade de Órgãos
5.
Nat Immunol ; 18(6): 665-674, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28459435

RESUMO

Tissue macrophages provide immunological defense and contribute to the establishment and maintenance of tissue homeostasis. Here we used constitutive and inducible mutagenesis to delete the nuclear transcription regulator Mecp2 in macrophages. Mice that lacked the gene encoding Mecp2, which is associated with Rett syndrome, in macrophages did not show signs of neurodevelopmental disorder but displayed spontaneous obesity, which was linked to impaired function of brown adipose tissue (BAT). Specifically, mutagenesis of a BAT-resident Cx3Cr1+ macrophage subpopulation compromised homeostatic thermogenesis but not acute, cold-induced thermogenesis. Mechanistically, malfunction of BAT in pre-obese mice with mutant macrophages was associated with diminished sympathetic innervation and local titers of norepinephrine, which resulted in lower expression of thermogenic factors by adipocytes. Mutant macrophages overexpressed the signaling receptor and ligand PlexinA4, which might contribute to the phenotype by repulsion of sympathetic axons expressing the transmembrane semaphorin Sema6A. Collectively, we report a previously unappreciated homeostatic role for macrophages in the control of tissue innervation. Disruption of this circuit in BAT resulted in metabolic imbalance.


Assuntos
Tecido Adiposo Marrom/imunologia , Macrófagos/imunologia , Proteína 2 de Ligação a Metil-CpG/genética , Sistema Nervoso Simpático/metabolismo , Termogênese/imunologia , Adipócitos Marrons , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/metabolismo , Animais , Axônios/metabolismo , Receptor 1 de Quimiocina CX3C , Metabolismo Energético/imunologia , Citometria de Fluxo , Homeostase , Immunoblotting , Macrófagos/metabolismo , Camundongos , Mutagênese Sítio-Dirigida , Proteínas do Tecido Nervoso/metabolismo , Norepinefrina/metabolismo , Obesidade/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Superfície Celular/metabolismo , Receptores de Quimiocinas/metabolismo , Semaforinas/metabolismo
6.
Immunity ; 53(5): 1033-1049.e7, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33049219

RESUMO

Microglia, the resident macrophages of the brain parenchyma, are key players in central nervous system (CNS) development, homeostasis, and disorders. Distinct brain pathologies seem associated with discrete microglia activation modules. How microglia regain quiescence following challenges remains less understood. Here, we explored the role of the interleukin-10 (IL-10) axis in restoring murine microglia homeostasis following a peripheral endotoxin challenge. Specifically, we show that lipopolysaccharide (LPS)-challenged mice harboring IL-10 receptor-deficient microglia displayed neuronal impairment and succumbed to fatal sickness. Addition of a microglial tumor necrosis factor (TNF) deficiency rescued these animals, suggesting a microglia-based circuit driving pathology. Single cell transcriptome analysis revealed various IL-10 producing immune cells in the CNS, including most prominently Ly49D+ NK cells and neutrophils, but not microglia. Collectively, we define kinetics of the microglia response to peripheral endotoxin challenge, including their activation and robust silencing, and highlight the critical role of non-microglial IL-10 in preventing deleterious microglia hyperactivation.


Assuntos
Endotoxinas/imunologia , Interleucina-10/metabolismo , Microglia/imunologia , Microglia/metabolismo , Animais , Biomarcadores , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Imunofenotipagem , Interleucina-10/genética , Mucosa Intestinal/citologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/imunologia , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos
8.
Immunity ; 46(6): 1030-1044.e8, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28636953

RESUMO

Microglia seed the embryonic neuro-epithelium, expand and actively sculpt neuronal circuits in the developing central nervous system, but eventually adopt relative quiescence and ramified morphology in the adult. Here, we probed the impact of post-transcriptional control by microRNAs (miRNAs) on microglial performance during development and adulthood by generating mice lacking microglial Dicer expression at these distinct stages. Conditional Dicer ablation in adult microglia revealed that miRNAs were required to limit microglial responses to challenge. After peripheral endotoxin exposure, Dicer-deficient microglia expressed more pro-inflammatory cytokines than wild-type microglia and thereby compromised hippocampal neuronal functions. In contrast, prenatal Dicer ablation resulted in spontaneous microglia activation and revealed a role for Dicer in DNA repair and preservation of genome integrity. Accordingly, Dicer deficiency rendered otherwise radio-resistant microglia sensitive to gamma irradiation. Collectively, the differential impact of the Dicer ablation on microglia of the developing and adult brain highlights the changes these cells undergo with time.


Assuntos
Hipocampo/metabolismo , MicroRNAs/genética , Microglia/fisiologia , Neurônios/fisiologia , Ribonuclease III/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Reparo do DNA , Feminino , Hipocampo/embriologia , Hipocampo/crescimento & desenvolvimento , Humanos , Imageamento Tridimensional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , Atividade Motora , Plasticidade Neuronal , Ribonuclease III/genética
9.
Eur J Immunol ; 50(3): 353-362, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31762013

RESUMO

Conditional mutagenesis and fate mapping have contributed considerably to our understanding of physiology and pathology. Specifically, Cre recombinase-based approaches allow the definition of cell type-specific contributions to disease development and of inter-cellular communication circuits in respective animal models. Here we compared Cx3 cr1CreER and Sall1CreER transgenic mice and their use to decipher the brain macrophage compartment as a showcase to discuss recent technological advances. Specifically, we highlight the need to define the accuracy of Cre recombinase expression, as well as strengths and pitfalls of these particular systems that should be taken into consideration when applying these models.


Assuntos
Encéfalo , Integrases , Macrófagos , Camundongos Transgênicos , Modelos Animais , Animais , Camundongos , Fatores de Transcrição
10.
Eur J Immunol ; 49(1): 19-29, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407631

RESUMO

The involvement of macrophages in the pathogenesis of obesity has been recognized since 2003. Early studies mostly focused on the role of macrophages in adipose tissue (AT) and in obesity-associated chronic low-grade inflammation. Lately, AT macrophages were shown to undergo intrinsic metabolic changes that affect their immune function (i.e., immunometabolism), corresponding to their unique properties along the range of pro- versus anti-inflammatory activity. In parallel, recent studies in mice revealed critical neuronal-macrophage interactions, both in the CNS and in peripheral tissues, including in white and brown AT. These intercellular activities impinge on energy and metabolic homeostasis, partially by also engaging adipocytes in a neuronal-macrophage-adipocyte ménage à trois. Finally, neuropeptides (NP), such as NPY and appetite-reducing NPFF, may prove as mediators in such intercellular network. In this concise review, we highlight some of these recent insights on adipose macrophage immunometabolism, as well as central and peripheral neuronal-macrophage interactions with emphasis on their impact on adipocyte biology and whole-body metabolism. We also discuss the expanding view on the role of the NP, NPY and NPFF, in obesity.


Assuntos
Tecido Adiposo/fisiologia , Inflamação/imunologia , Macrófagos/fisiologia , Neurônios/fisiologia , Obesidade/imunologia , Animais , Comunicação Celular , Sistema Nervoso Central , Humanos , Neuropeptídeos/metabolismo
11.
Eur J Immunol ; 47(7): 1142-1152, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28471480

RESUMO

T-cell development is a spatially and temporally regulated process, orchestrated by well-defined contributions of transcription factors and cytokines. Here, we identify the noncoding RNA miR-142 as an additional regulatory layer within murine thymocyte development and proliferation. MiR-142 deficiency impairs the expression of cell cycle-promoting genes in mature mouse thymocytes and early progenitors, accompanied with increased levels of cyclin-dependent kinase inhibitor 1B (Cdkn1b, also known as p27Kip1 ). By using CRISPR/Cas9 technology to delete the miR-142-3p recognition element in the 3'UTR of cdkn1b, we confirm that this gene is a novel target of miR-142-3p in vivo. Increased Cdkn1b protein expression alone however was insufficient to cause proliferation defects in thymocytes, indicating the existence of additional critical miR-142 targets. Collectively, we establish a key role for miR-142 in the control of early and mature thymocyte proliferation, demonstrating the multifaceted role of a single miRNA on several target genes.


Assuntos
Inibidor de Quinase Dependente de Ciclina p27/genética , MicroRNAs/metabolismo , Timócitos/fisiologia , Regiões 3' não Traduzidas , Animais , Sistemas CRISPR-Cas , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p27/deficiência , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Regulação Neoplásica da Expressão Gênica , Camundongos , MicroRNAs/genética , Processamento Pós-Transcricional do RNA
12.
J Biol Chem ; 290(24): 15260-78, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25911099

RESUMO

Gene-wide association and candidate gene studies indicate that the greatest effect on multiple sclerosis (MS) risk is driven by the HLA-DRB1*15:01 allele within the HLA-DR15 haplotype (HLA-DRB1*15:01-DQA1*01:02-DQB1*0602-DRB5*01:01). Nevertheless, linkage disequilibrium makes it difficult to define, without functional studies, whether the functionally relevant effect derives from DRB1*15:01 only, from its neighboring DQA1*01:02-DQB1*06:02 or DRB5*01:01 genes of HLA-DR15 haplotype, or from their combinations or epistatic interactions. Here, we analyzed the impact of the different HLA-DR15 haplotype alleles on disease susceptibility in a new "humanized" model of MS induced in HLA-transgenic (Tg) mice by human oligodendrocyte-specific protein (OSP)/claudin-11 (hOSP), one of the bona fide potential primary target antigens in MS. We show that the hOSP-associated MS-like disease is dominated by the DRB1*15:01 allele not only as the DRA1*01:01;DRB1*15:01 isotypic heterodimer but also, unexpectedly, as a functional DQA1*01:02;DRB1*15:01 mixed isotype heterodimer. The contribution of HLA-DQA1/DRB1 mixed isotype heterodimer to OSP pathogenesis was revealed in (DRB1*1501xDQB1*0602)F1 double-Tg mice immunized with hOSP(142-161) peptide, where the encephalitogenic potential of prevalent DRB1*1501/hOSP(142-161)-reactive Th1/Th17 cells is hindered due to a single amino acid difference in the OSP(142-161) region between humans and mice; this impedes binding of DRB1*1501 to the mouse OSP(142-161) epitope in the mouse CNS while exposing functional binding of mouse OSP(142-161) to DQA1*01:02;DRB1*15:01 mixed isotype heterodimer. This study, which shows for the first time a functional HLA-DQA1/DRB1 mixed isotype heterodimer and its potential association with disease susceptibility, provides a rationale for a potential effect on MS risk from DQA1*01:02 through functional DQA1*01:02;DRB1*15:01 antigen presentation. Furthermore, it highlights a potential contribution to MS risk also from interisotypic combination between products of neighboring HLA-DR15 haplotype alleles, in this case the DQA1/DRB1 combination.


Assuntos
Cadeias alfa de HLA-DQ/imunologia , Cadeias HLA-DRB1/imunologia , Esclerose Múltipla/imunologia , Sequência de Aminoácidos , Animais , Claudinas/química , Dimerização , Epistasia Genética , Cadeias alfa de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Haplótipos , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
13.
Biochem Biophys Res Commun ; 465(4): 851-6, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26319551

RESUMO

High-throughput siRNA screening was employed to identify novel genes that regulate cytokine-induced death of pancreatic ß-cells. One of the 'hits' was Nedd4 family interacting protein 1 (Ndfip1), an adaptor and activator of Nedd4-family ubiquitin ligases. Silencing of Ndfip1 inhibited cytokine-induced apoptosis of mouse and human pancreatic islets and promoted glucose-stimulated insulin secretion. These effects were associated with an increase in the cellular content of JunB, a potent inhibitor of ER stress and apoptosis. Silencing of Ndfip1 also increased the expression of ATF4, IRE-1α, and the spliced form of XBP that govern the unfolded protein response (UPR) and relieve cytokine-induced ER stress, while overexpression of Ndfip1 exerted opposite effects. These findings implicate Ndfip1 in the degradation of JunB; inhibition of the UPR and insulin secretion; and promotion of cytokine-induced death of pancreatic ß-cells.


Assuntos
Apoptose/fisiologia , Proteínas de Transporte/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Proteínas de Membrana/metabolismo , Animais , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Estresse do Retículo Endoplasmático , Ensaios de Triagem em Larga Escala , Humanos , Insulina/metabolismo , Secreção de Insulina , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteólise , RNA Interferente Pequeno/genética , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas
14.
J Biol Chem ; 288(8): 5682-93, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23275337

RESUMO

Selective serotonin reuptake inhibitors (SSRIs) are antidepressants used for the treatment of mood and anxiety disorders. Here, we demonstrate that incubation (2 h) of murine islets or Min6 ß cell line with the SSRIs paroxetine, fluoxetine, or sertraline inhibited insulin-induced Tyr phosphorylation of insulin receptor substrate (IRS)-2 protein and the activation of its downstream targets Akt and the ribosomal protein S6 kinase-1 (S6K1). Inhibition was dose-dependent with half-maximal effects at ∼15-20 µM. It correlated with a rapid dephosphorylation and activation of the IRS kinase GSK3ß. Introduction of GSK3ß siRNAs eliminated the inhibitory effects of the SSRIs. Inhibition of IRS-2 action by 30 µM SSRI was associated with a marked inhibition of glucose-stimulated insulin secretion from murine and human pancreatic islets. Secretion induced by basic secretagogues (KCl and Arg) was not affected by these drugs. Prolonged treatment (16 h) of Min6 cells with sertraline resulted in the induction of inducible nitric oxide synthase; activation of endoplasmic reticulum stress, and the initiation of the unfolded protein response, manifested by enhanced transcription of ATF4 and C/EBP homologous protein. This triggered an apoptotic process, manifested by enhanced caspase 3/7 activity, which resulted in ß cell death. These findings implicate SSRIs as inhibitors of IRS protein function and insulin action through the activation of GSK3ß. They further suggest that SSRIs inhibit insulin secretion; induce the unfolded protein response; activate an apoptotic process, and trigger ß cell death. Given that SSRIs promote insulin resistance while inhibiting insulin secretion, these drugs might accelerate the transition from an insulin-resistant state to overt diabetes.


Assuntos
Células Secretoras de Insulina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Animais , Apoptose , Morte Celular , Linhagem Celular , Diabetes Mellitus/induzido quimicamente , Diabetes Mellitus/metabolismo , Fluoxetina/farmacologia , Humanos , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Células Secretoras de Insulina/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Paroxetina/farmacologia , Sertralina/farmacologia , Transdução de Sinais , Resposta a Proteínas não Dobradas
17.
Hepatology ; 57(2): 525-32, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22911490

RESUMO

UNLABELLED: Sphingolipids are important structural components of cell membranes and act as critical regulators of cell function by modulating intracellular signaling pathways. Specific sphingolipids, such as ceramide, glucosylceramide, and ganglioside GM3, have been implicated in various aspects of insulin resistance, because they have been shown to modify several steps in the insulin signaling pathway, such as phosphorylation of either protein kinase B (Akt) or of the insulin receptor. We now explore the role of the ceramide acyl chain length in insulin signaling by using a ceramide synthase 2 (CerS2) null mouse, which is unable to synthesize very long acyl chain (C22-C24) ceramides. CerS2 null mice exhibited glucose intolerance despite normal insulin secretion from the pancreas. Both insulin receptor and Akt phosphorylation were abrogated in liver, but not in adipose tissue or in skeletal muscle. The lack of insulin receptor phosphorylation in liver correlated with its inability to translocate into detergent-resistant membranes (DRMs). Moreover, DRMs in CerS2 null mice displayed properties significantly different from those in wild-type mice, suggesting that the altered sphingolipid acyl chain length directly affects insulin receptor translocation and subsequent signaling. CONCLUSION: We conclude that the sphingolipid acyl chain composition of liver regulates insulin signaling by modifying insulin receptor translocation into membrane microdomains.


Assuntos
Intolerância à Glucose/etiologia , Resistência à Insulina , Microdomínios da Membrana/efeitos dos fármacos , Esfingolipídeos/metabolismo , Animais , Glicemia/metabolismo , Membrana Celular/efeitos dos fármacos , Ceramidas/metabolismo , Intolerância à Glucose/sangue , Insulina/fisiologia , Fígado/metabolismo , Microdomínios da Membrana/fisiologia , Camundongos , Oxirredutases/deficiência , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Transdução de Sinais/fisiologia
18.
Methods Mol Biol ; 2713: 253-267, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37639128

RESUMO

Global gene expression profiling has provided valuable insights into the specific contributions of different cell types to various physiological processes. Notably though, both bulk and single-cell transcriptomics require the prior retrieval of the cells from their tissue context to be analyzed. Isolation protocols for tissue macrophages are, however, notoriously inefficient and, moreover, prone to introduce considerable bias and artifacts. Here, we will discuss a valuable alternative, originally introduced by Amieux and colleagues. This so-called RiboTag approach allows, in combination with respective macrophage-specific Cre transgenic lines, to retrieve macrophage translatomes from crude tissue extracts. We will review our experience with this ingenious method, focusing on the study of brain macrophages, including microglia and border-associated cells. We will elaborate on the advantages of the RiboTag approach that render it a valuable complement to standard cell sorting-based profiling strategies, especially for the investigation of tissue macrophages.


Assuntos
Artefatos , Macrófagos , Animais , Animais Geneticamente Modificados , Encéfalo , Separação Celular
19.
Methods Mol Biol ; 2713: 481-503, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37639143

RESUMO

Macrophages represent a broad spectrum of distinct, but closely related tissue-resident immune cells. This presents a major challenge for the study of functional aspects of these cells using classical Cre recombinase-mediated conditional mutagenesis in mice, since single promoter-driven Cre transgenic models often display limited specificity toward their intended target. The advent of CRISPR/Cas9 technology has now provided a time- and cost-effective method to explore the full potential of binary transgenic, intersectional genetics. Specifically, the use of two promoters driving inactive Cre fragments that, when co-expressed, dimerize and only then gain recombinase activity allows the characterization and manipulation of genetically defined tissue macrophage subpopulations. Here, we will elaborate on the use of this protocol to capitalize on these recent technological advances in mouse genetics and discuss their strengths and pitfalls to improve the study of tissue macrophage subpopulations in physiology and pathophysiology.


Assuntos
Técnicas de Transferência de Genes , Macrófagos , Animais , Camundongos , Animais Geneticamente Modificados , Dimerização , Mutagênese
20.
J Exp Med ; 221(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38497819

RESUMO

The mycobiota are a critical part of the gut microbiome, but host-fungal interactions and specific functional contributions of commensal fungi to host fitness remain incompletely understood. Here, we report the identification of a new fungal commensal, Kazachstania heterogenica var. weizmannii, isolated from murine intestines. K. weizmannii exposure prevented Candida albicans colonization and significantly reduced the commensal C. albicans burden in colonized animals. Following immunosuppression of C. albicans colonized mice, competitive fungal commensalism thereby mitigated fatal candidiasis. Metagenome analysis revealed K. heterogenica or K. weizmannii presence among human commensals. Our results reveal competitive fungal commensalism within the intestinal microbiota, independent of bacteria and immune responses, that could bear potential therapeutic value for the management of C. albicans-mediated diseases.


Assuntos
Candidíase , Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Simbiose , Terapia de Imunossupressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA