Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Neuroimage ; 269: 119937, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36791896

RESUMO

Proprioception is the sense of body position and movement that relies on afference from the proprioceptors in muscles and joints. Proprioceptive responses in the primary sensorimotor (SM1) cortex can be elicited by stimulating the proprioceptors using evoked (passive) limb movements. In magnetoencephalography (MEG), proprioceptive processing can be quantified by recording the movement evoked fields (MEFs) and movement-induced beta power modulations or by computing corticokinematic coherence (CKC) between the limb kinematics and cortical activity. We examined whether cortical proprioceptive processing quantified with MEF peak strength, relative beta suppression and rebound power and CKC strength is affected by the movement range of the finger. MEG activity was measured from 16 right-handed healthy volunteers while movements were applied to their right-index finger metacarpophalangeal joint with an actuator. Movements were either intermittent, every 3000 ± 250 ms, to estimate MEF or continuous, at 3 Hz, to estimate CKC. In both cases, 4 different ranges of motion of the stimuli were investigated: 15, 18, 22 and 26 mm for MEF and 6, 7, 9 and 13 mm for CKC. MEF amplitude, relative beta suppression and rebound as well as peak CKC strength at the movement frequency were compared between the movement ranges in the source space. Inter-individual variation was also compared between the MEF and CKC strengths. As expected, MEF and CKC responses peaked at the contralateral SM1 cortex. MEF peak, beta suppression and rebound and CKC strengths were similar across all movement ranges. Furthermore, CKC strength showed a lower degree of inter-individual variation compared with MEF strength. Our result of absent modulation by movement range in cortical responses to passive movements of the finger indicates that variability in movement range should not hinder comparability between different studies or participants. Furthermore, our data indicates that CKC is less prone to inter-individual variability than MEFs, and thus more advantageous in what pertains to statistical power.


Assuntos
Movimento , Córtex Sensório-Motor , Humanos , Movimento/fisiologia , Córtex Sensório-Motor/fisiologia , Dedos/fisiologia , Postura , Magnetoencefalografia , Propriocepção/fisiologia
2.
Neuroimage ; 265: 119770, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462732

RESUMO

Children have more difficulty perceiving speech in noise than adults. Whether this difficulty relates to an immature processing of prosodic or linguistic elements of the attended speech is still unclear. To address the impact of noise on linguistic processing per se, we assessed how babble noise impacts the cortical tracking of intelligible speech devoid of prosody in school-aged children and adults. Twenty adults and twenty children (7-9 years) listened to synthesized French monosyllabic words presented at 2.5 Hz, either randomly or in 4-word hierarchical structures wherein 2 words formed a phrase at 1.25 Hz, and 2 phrases formed a sentence at 0.625 Hz, with or without babble noise. Neuromagnetic responses to words, phrases and sentences were identified and source-localized. Children and adults displayed significant cortical tracking of words in all conditions, and of phrases and sentences only when words formed meaningful sentences. In children compared with adults, the cortical tracking was lower for all linguistic units in conditions without noise. In the presence of noise, the cortical tracking was similarly reduced for sentence units in both groups, but remained stable for phrase units. Critically, when there was noise, adults increased the cortical tracking of monosyllabic words in the inferior frontal gyri and supratemporal auditory cortices but children did not. This study demonstrates that the difficulties of school-aged children in understanding speech in a multi-talker background might be partly due to an immature tracking of lexical but not supra-lexical linguistic units.


Assuntos
Percepção da Fala , Fala , Adulto , Humanos , Criança , Percepção da Fala/fisiologia , Percepção Auditiva , Ruído , Idioma
3.
PLoS Biol ; 18(8): e3000840, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845876

RESUMO

Humans' propensity to acquire literacy relates to several factors, including the ability to understand speech in noise (SiN). Still, the nature of the relation between reading and SiN perception abilities remains poorly understood. Here, we dissect the interplay between (1) reading abilities, (2) classical behavioral predictors of reading (phonological awareness, phonological memory, and rapid automatized naming), and (3) electrophysiological markers of SiN perception in 99 elementary school children (26 with dyslexia). We demonstrate that, in typical readers, cortical representation of the phrasal content of SiN relates to the degree of development of the lexical (but not sublexical) reading strategy. In contrast, classical behavioral predictors of reading abilities and the ability to benefit from visual speech to represent the syllabic content of SiN account for global reading performance (i.e., speed and accuracy of lexical and sublexical reading). In individuals with dyslexia, we found preserved integration of visual speech information to optimize processing of syntactic information but not to sustain acoustic/phonemic processing. Finally, within children with dyslexia, measures of cortical representation of the phrasal content of SiN were negatively related to reading speed and positively related to the compromise between reading precision and reading speed, potentially owing to compensatory attentional mechanisms. These results clarify the nature of the relation between SiN perception and reading abilities in typical child readers and children with dyslexia and identify novel electrophysiological markers of emergent literacy.


Assuntos
Córtex Cerebral/fisiologia , Ruído , Leitura , Fala/fisiologia , Comportamento , Criança , Dislexia/fisiopatologia , Humanos , Modelos Lineares , Neuroimagem , Fonética
4.
Neuroimage ; 261: 119491, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35908607

RESUMO

As humans, we seamlessly hold objects in our hands, and may even lose consciousness of these objects. This phenomenon raises the unsettled question of the involvement of the cerebral cortex, the core area for voluntary motor control, in dynamically maintaining steady muscle force. To address this issue, we measured magnetoencephalographic brain activity from healthy adults who maintained a steady pinch grip. Using a novel analysis approach, we uncovered fine-grained temporal modulations in the beta sensorimotor brain rhythm and its coupling with muscle activity, with respect to several aspects of muscle force (rate of increase/decrease or plateauing high/low). These modulations preceded changes in force features by ∼40 ms and possessed behavioral relevance, as less salient or absent modulation predicted a more stable force output. These findings have consequences for the existing theories regarding the functional role of cortico-muscular coupling, and suggest that steady muscle contractions are characterized by a stable rather than fluttering involvement of the sensorimotor cortex.


Assuntos
Contração Isométrica , Córtex Sensório-Motor , Adulto , Eletromiografia , Humanos , Contração Isométrica/fisiologia , Magnetoencefalografia/métodos , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Córtex Sensório-Motor/fisiologia
5.
Neuroimage ; 253: 119061, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35259526

RESUMO

Dyslexia is a frequent developmental disorder in which reading acquisition is delayed and that is usually associated with difficulties understanding speech in noise. At the neuronal level, children with dyslexia were reported to display abnormal cortical tracking of speech (CTS) at phrasal rate. Here, we aimed to determine if abnormal tracking relates to reduced reading experience, and if it is modulated by the severity of dyslexia or the presence of acoustic noise. We included 26 school-age children with dyslexia, 26 age-matched controls and 26 reading-level matched controls. All were native French speakers. Children's brain activity was recorded with magnetoencephalography while they listened to continuous speech in noiseless and multiple noise conditions. CTS values were compared between groups, conditions and hemispheres, and also within groups, between children with mild and severe dyslexia. Syllabic CTS was significantly reduced in the right superior temporal gyrus in children with dyslexia compared with controls matched for age but not for reading level. Severe dyslexia was characterized by lower rapid automatized naming (RAN) abilities compared with mild dyslexia, and phrasal CTS lateralized to the right hemisphere in children with mild dyslexia and all control groups but not in children with severe dyslexia. Finally, an alteration in phrasal CTS was uncovered in children with dyslexia compared with age-matched controls in babble noise conditions but not in other less challenging listening conditions (non-speech noise or noiseless conditions); no such effect was seen in comparison with reading-level matched controls. Overall, our results confirmed the finding of altered neuronal basis of speech perception in noiseless and babble noise conditions in dyslexia compared with age-matched peers. However, the absence of alteration in comparison with reading-level matched controls demonstrates that such alterations are associated with reduced reading level, suggesting they are merely driven by reduced reading experience rather than a cause of dyslexia. Finally, our result of altered hemispheric lateralization of phrasal CTS in relation with altered RAN abilities in severe dyslexia is in line with a temporal sampling deficit of speech at phrasal rate in dyslexia.


Assuntos
Dislexia , Percepção da Fala , Criança , Humanos , Magnetoencefalografia , Ruído , Fonética , Fala/fisiologia , Percepção da Fala/fisiologia
6.
Cereb Cortex ; 31(8): 3820-3831, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33791775

RESUMO

Cortical tracking of linguistic structures in speech, such as phrases (<3 Hz, delta band) and syllables (3-8 Hz, theta band), is known to be crucial for speech comprehension. However, it has not been established whether this effect is related to language proficiency. Here, we investigate how auditory cortical activity in second language (L2) learners tracked L2 speech. Using magnetoencephalography, we recorded brain activity from participants listening to Spanish and Basque. Participants were Spanish native (L1) language speakers studying Basque (L2) at the same language center at three different levels: beginner (Grade 1), intermediate (Grade 2), and advanced (Grade 3). We found that 1) both delta and theta tracking to L2 speech in the auditory cortex were related to L2 learning proficiency and that 2) top-down modulations of activity in the left auditory regions during L2 speech listening-by the left inferior frontal and motor regions in delta band and by the left middle temporal regions in theta band-were also related to L2 proficiency. Altogether, these results indicate that the ability to learn an L2 is related to successful cortical tracking of L2 speech and its modulation by neuronal oscillations in higher-order cortical regions.


Assuntos
Córtex Cerebral/fisiologia , Idioma , Multilinguismo , Fala/fisiologia , Adulto , Córtex Auditivo/fisiologia , Mapeamento Encefálico , Ritmo Delta , Feminino , Humanos , Desenvolvimento da Linguagem , Aprendizagem , Magnetoencefalografia , Masculino , Pessoa de Meia-Idade , Desempenho Psicomotor/fisiologia , Ritmo Teta
7.
J Neurosci ; 40(5): 1053-1065, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31889007

RESUMO

Lip-reading is crucial for understanding speech in challenging conditions. But how the brain extracts meaning from, silent, visual speech is still under debate. Lip-reading in silence activates the auditory cortices, but it is not known whether such activation reflects immediate synthesis of the corresponding auditory stimulus or imagery of unrelated sounds. To disentangle these possibilities, we used magnetoencephalography to evaluate how cortical activity in 28 healthy adult humans (17 females) entrained to the auditory speech envelope and lip movements (mouth opening) when listening to a spoken story without visual input (audio-only), and when seeing a silent video of a speaker articulating another story (video-only). In video-only, auditory cortical activity entrained to the absent auditory signal at frequencies <1 Hz more than to the seen lip movements. This entrainment process was characterized by an auditory-speech-to-brain delay of ∼70 ms in the left hemisphere, compared with ∼20 ms in audio-only. Entrainment to mouth opening was found in the right angular gyrus at <1 Hz, and in early visual cortices at 1-8 Hz. These findings demonstrate that the brain can use a silent lip-read signal to synthesize a coarse-grained auditory speech representation in early auditory cortices. Our data indicate the following underlying oscillatory mechanism: seeing lip movements first modulates neuronal activity in early visual cortices at frequencies that match articulatory lip movements; the right angular gyrus then extracts slower features of lip movements, mapping them onto the corresponding speech sound features; this information is fed to auditory cortices, most likely facilitating speech parsing.SIGNIFICANCE STATEMENT Lip-reading consists in decoding speech based on visual information derived from observation of a speaker's articulatory facial gestures. Lip-reading is known to improve auditory speech understanding, especially when speech is degraded. Interestingly, lip-reading in silence still activates the auditory cortices, even when participants do not know what the absent auditory signal should be. However, it was uncertain what such activation reflected. Here, using magnetoencephalographic recordings, we demonstrate that it reflects fast synthesis of the auditory stimulus rather than mental imagery of unrelated, speech or non-speech, sounds. Our results also shed light on the oscillatory dynamics underlying lip-reading.


Assuntos
Córtex Auditivo/fisiologia , Leitura Labial , Percepção da Fala/fisiologia , Estimulação Acústica , Feminino , Humanos , Magnetoencefalografia , Masculino , Reconhecimento Visual de Modelos/fisiologia , Espectrografia do Som , Adulto Jovem
8.
Neuroimage ; 230: 117793, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33497769

RESUMO

The linearly constrained minimum variance beamformer is frequently used to reconstruct sources underpinning neuromagnetic recordings. When reconstructions must be compared across conditions, it is considered good practice to use a single, "common" beamformer estimated from all the data at once. This is to ensure that differences between conditions are not ascribable to differences in beamformer weights. Here, we investigate the localization accuracy of such a common beamformer. Based on theoretical derivations, we first show that the common beamformer leads to localization errors in source reconstruction. We then turn to simulations in which we attempt to reconstruct a (genuine) source in a first condition, while considering a second condition in which there is an (interfering) source elsewhere in the brain. We estimate maps of mislocalization and assess statistically the difference between "standard" and "common" beamformers. We complement our findings with an application to experimental MEG data. The results show that the common beamformer may yield significant mislocalization. Specifically, the common beamformer may force the genuine source to be reconstructed closer to the interfering source than it really is. As the same applies to the reconstruction of the interfering source, both sources are pulled closer together than they are. This observation was further illustrated in experimental data. Thus, although the common beamformer allows for the comparison of conditions, in some circumstances it introduces localization inaccuracies. We recommend alternative approaches to the general problem of comparing conditions.


Assuntos
Mapeamento Encefálico/normas , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Eletroencefalografia/normas , Processamento de Imagem Assistida por Computador/normas , Magnetoencefalografia/normas , Adulto , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Magnetoencefalografia/métodos , Masculino , Adulto Jovem
9.
Neuroimage ; 239: 118314, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175428

RESUMO

Contextual information triggers predictions about the content ("what") of environmental stimuli to update an internal generative model of the surrounding world. However, visual information dynamically changes across time, and temporal predictability ("when") may influence the impact of internal predictions on visual processing. In this magnetoencephalography (MEG) study, we investigated how processing feature specific information ("what") is affected by temporal predictability ("when"). Participants (N = 16) were presented with four consecutive Gabor patches (entrainers) with constant spatial frequency but with variable orientation and temporal onset. A fifth target Gabor was presented after a longer delay and with higher or lower spatial frequency that participants had to judge. We compared the neural responses to entrainers where the Gabor orientation could, or could not be temporally predicted along the entrainer sequence, and with inter-entrainer timing that was constant (predictable), or variable (unpredictable). We observed suppression of evoked neural responses in the visual cortex for predictable stimuli. Interestingly, we found that temporal uncertainty increased expectation suppression. This suggests that in temporally uncertain scenarios the neurocognitive system invests less resources in integrating bottom-up information. Multivariate pattern analysis showed that predictable visual features could be decoded from neural responses. Temporal uncertainty did not affect decoding accuracy for early visual responses, with the feature specificity of early visual neural activity preserved across conditions. However, decoding accuracy was less sustained over time for temporally jittered than for isochronous predictable visual stimuli. These findings converge to suggest that the cognitive system processes visual features of temporally predictable stimuli in higher detail, while processing temporally uncertain stimuli may rely more heavily on abstract internal expectations.


Assuntos
Antecipação Psicológica/fisiologia , Magnetoencefalografia , Estimulação Luminosa , Tempo , Incerteza , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Potenciais Evocados/fisiologia , Feminino , Humanos , Masculino , Análise Multivariada , Tempo de Reação , Adulto Jovem
10.
Neuroimage ; 233: 117969, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33744453

RESUMO

During continuous speech listening, brain activity tracks speech rhythmicity at frequencies matching with the repetition rate of phrases (0.2-1.5 Hz), words (2-4 Hz) and syllables (4-8 Hz). Here, we evaluated the applicability of wearable MEG based on optically-pumped magnetometers (OPMs) to measure such cortical tracking of speech (CTS). Measuring CTS with OPMs is a priori challenging given the complications associated with OPM measurements at frequencies below 4 Hz, due to increased intrinsic interference and head movement artifacts. Still, this represents an important development as OPM-MEG provides lifespan compliance and substantially improved spatial resolution compared with classical MEG. In this study, four healthy right-handed adults listened to continuous speech for 9 min. The radial component of the magnetic field was recorded simultaneously with 45-46 OPMs evenly covering the scalp surface and fixed to an additively manufactured helmet which fitted all 4 participants. We estimated CTS with reconstruction accuracy and coherence, and determined the number of dominant principal components (PCs) to remove from the data (as a preprocessing step) for optimal estimation. We also identified the dominant source of CTS using a minimum norm estimate. CTS estimated with reconstruction accuracy and coherence was significant in all 4 participants at phrasal and word rates, and in 3 participants (reconstruction accuracy) or 2 (coherence) at syllabic rate. Overall, close-to-optimal CTS estimation was obtained when the 3 (reconstruction accuracy) or 10 (coherence) first PCs were removed from the data. Importantly, values of reconstruction accuracy (~0.4 for 0.2-1.5-Hz CTS and ~0.1 for 2-8-Hz CTS) were remarkably close to those previously reported in classical MEG studies. Finally, source reconstruction localized the main sources of CTS to bilateral auditory cortices. In conclusion, t his study demonstrates that OPMs can be used for the purpose of CTS assessment. This finding opens new research avenues to unravel the neural network involved in CTS across the lifespan and potential alterations in, e.g., language developmental disorders. Data also suggest that OPMs are generally suitable for recording neural activity at frequencies below 4 Hz provided PCA is used as a preprocessing step; 0.2-1.5-Hz being the lowest frequency range successfully investigated here.


Assuntos
Estimulação Acústica/métodos , Córtex Auditivo/fisiologia , Magnetoencefalografia/métodos , Percepção da Fala/fisiologia , Fala/fisiologia , Adulto , Córtex Auditivo/diagnóstico por imagem , Feminino , Humanos , Masculino , Adulto Jovem
11.
J Neurosci ; 39(15): 2938-2950, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30745419

RESUMO

In multitalker backgrounds, the auditory cortex of adult humans tracks the attended speech stream rather than the global auditory scene. Still, it is unknown whether such preferential tracking also occurs in children whose speech-in-noise (SiN) abilities are typically lower compared with adults. We used magnetoencephalography (MEG) to investigate the frequency-specific cortical tracking of different elements of a cocktail party auditory scene in 20 children (age range, 6-9 years; 8 females) and 20 adults (age range, 21-40 years; 10 females). During MEG recordings, subjects attended to four different 5 min stories, mixed with different levels of multitalker background at four signal-to-noise ratios (SNRs; noiseless, +5, 0, and -5 dB). Coherence analysis quantified the coupling between the time courses of the MEG activity and attended speech stream, multitalker background, or global auditory scene, respectively. In adults, statistically significant coherence was observed between MEG signals originating from the auditory system and the attended stream at <1, 1-4, and 4-8 Hz in all SNR conditions. Children displayed similar coupling at <1 and 1-4 Hz, but increasing noise impaired the coupling more strongly than in adults. Also, children displayed drastically lower coherence at 4-8 Hz in all SNR conditions. These results suggest that children's difficulties to understand speech in noisy conditions are related to an immature selective cortical tracking of the attended speech streams. Our results also provide unprecedented evidence for an acquired cortical tracking of speech at syllable rate and argue for a progressive development of SiN abilities in humans.SIGNIFICANCE STATEMENT Behaviorally, children are less proficient than adults at understanding speech-in-noise. Here, neuromagnetic signals were recorded while healthy adults and typically developing 6- to 9-year-old children attended to a speech stream embedded in a multitalker background noise with varying intensity. Results demonstrate that auditory cortices of both children and adults selectively track the attended speaker's voice rather than the global acoustic input at phrasal and word rates. However, increments of noise compromised the tracking significantly more in children than in adults. Unexpectedly, children displayed limited tracking of both the attended voice and the global acoustic input at the 4-8 Hz syllable rhythm. Thus, both speech-in-noise abilities and cortical tracking of speech syllable repetition rate seem to mature later in adolescence.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Ruído , Percepção da Fala/fisiologia , Adolescente , Adulto , Envelhecimento/psicologia , Córtex Auditivo , Mapeamento Encefálico , Criança , Feminino , Humanos , Magnetoencefalografia , Masculino , Razão Sinal-Ruído , Adulto Jovem
12.
J Cogn Neurosci ; 32(5): 877-888, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31933439

RESUMO

Discrimination of words from nonspeech sounds is essential in communication. Still, how selective attention can influence this early step of speech processing remains elusive. To answer that question, brain activity was recorded with magnetoencephalography in 12 healthy adults while they listened to two sequences of auditory stimuli presented at 2.17 Hz, consisting of successions of one randomized word (tagging frequency = 0.54 Hz) and three acoustically matched nonverbal stimuli. Participants were instructed to focus their attention on the occurrence of a predefined word in the verbal attention condition and on a nonverbal stimulus in the nonverbal attention condition. Steady-state neuromagnetic responses were identified with spectral analysis at sensor and source levels. Significant sensor responses peaked at 0.54 and 2.17 Hz in both conditions. Sources at 0.54 Hz were reconstructed in supratemporal auditory cortex, left superior temporal gyrus (STG), left middle temporal gyrus, and left inferior frontal gyrus. Sources at 2.17 Hz were reconstructed in supratemporal auditory cortex and STG. Crucially, source strength in the left STG at 0.54 Hz was significantly higher in verbal attention than in nonverbal attention condition. This study demonstrates speech-sensitive responses at primary auditory and speech-related neocortical areas. Critically, it highlights that, during word discrimination, top-down attention modulates activity within the left STG. This area therefore appears to play a crucial role in selective verbal attentional processes for this early step of speech processing.


Assuntos
Atenção/fisiologia , Discriminação Psicológica/fisiologia , Potenciais Evocados/fisiologia , Córtex Pré-Frontal/fisiologia , Percepção da Fala/fisiologia , Lobo Temporal/fisiologia , Adulto , Córtex Auditivo/fisiologia , Potenciais Evocados Auditivos/fisiologia , Feminino , Humanos , Magnetoencefalografia , Masculino , Psicolinguística , Distribuição Aleatória , Adulto Jovem
13.
Neuroimage ; 216: 116788, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32348908

RESUMO

How the human brain uses self-generated auditory information during speech production is rather unsettled. Current theories of language production consider a feedback monitoring system that monitors the auditory consequences of speech output and an internal monitoring system, which makes predictions about the auditory consequences of speech before its production. To gain novel insights into underlying neural processes, we investigated the coupling between neuromagnetic activity and the temporal envelope of the heard speech sounds (i.e., cortical tracking of speech) in a group of adults who 1) read a text aloud, 2) listened to a recording of their own speech (i.e., playback), and 3) listened to another speech recording. Reading aloud was here used as a particular form of speech production that shares various processes with natural speech. During reading aloud, the reader's brain tracked the slow temporal fluctuations of the speech output. Specifically, auditory cortices tracked phrases (<1 â€‹Hz) but to a lesser extent than during the two speech listening conditions. Also, the tracking of words (2-4 â€‹Hz) and syllables (4-8 â€‹Hz) occurred at parietal opercula during reading aloud and at auditory cortices during listening. Directionality analyses were then used to get insights into the monitoring systems involved in the processing of self-generated auditory information. Analyses revealed that the cortical tracking of speech at <1 â€‹Hz, 2-4 â€‹Hz and 4-8 â€‹Hz is dominated by speech-to-brain directional coupling during both reading aloud and listening, i.e., the cortical tracking of speech during reading aloud mainly entails auditory feedback processing. Nevertheless, brain-to-speech directional coupling at 4-8 â€‹Hz was enhanced during reading aloud compared with listening, likely reflecting the establishment of predictions about the auditory consequences of speech before production. These data bring novel insights into how auditory verbal information is tracked by the human brain during perception and self-generation of connected speech.


Assuntos
Mapeamento Encefálico/métodos , Magnetoencefalografia/métodos , Neocórtex/fisiologia , Psicolinguística , Leitura , Percepção da Fala/fisiologia , Fala/fisiologia , Adulto , Córtex Auditivo/fisiologia , Feminino , Humanos , Masculino , Lobo Parietal/fisiologia , Adulto Jovem
14.
J Neurophysiol ; 124(6): 1959-1967, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112711

RESUMO

Corticokinematic coherence (CKC) is the phase coupling between limb kinematics and cortical neurophysiological signals, reflecting cortical processing of proprioceptive afference, and it is reproducible when estimated with magnetoencephalography (MEG). However, feasibility and reproducibility of CKC based on electroencephalography (EEG) is still unclear and is the primary object of the present report. Thirteen healthy right-handed volunteers (seven females, 21.7 ± 4.3 yr) participated in two combined MEG/EEG sessions 12.6 ± 1.3 mo apart. Participants' dominant and nondominant index finger was continuously moved at 3 Hz for 4 min separately using a pneumatic-movement actuator. Coherence was computed between finger acceleration and three derivations of EEG signals: 1) average reference, 2) bipolar derivations, and 3) surface Laplacian. CKC strength was defined as the peak coherence value at movement frequency. Intraclass-correlation coefficient values (0.74-0.93) indicated excellent intersession reproducibility for CKC strength for all derivations and moved fingers. CKC strength obtained with EEG was approximately two times lower compared with MEG, but the values were positively correlated across the participants. CKC strength was significantly (P < 0.01) higher for bipolar (session 1: 0.19 ± 0.09; session 2: 0.20 ± 0.10) and surface Laplacian (session 1: 0.22 ± 0.09; session 2: 0.21 ± 0.09) derivations than for the average reference (session 1: 0.10 ± 0.04; session 2: 0.11 ± 0.05). We demonstrated that CKC is a feasible and reproducible tool to monitor proprioception using EEG recordings, although the strength of CKC was twice lower for EEG compared with MEG. Laplacian and bipolar (CP3-C1/CP3-C3 and CP4-C2/C4-FC2) EEG derivation(s) are recommended for future research and clinical use of CKC method. NEW & NOTEWORTHY The most important message in this report is that the corticokinematic coherence (CKC) method is a feasible and reproducible tool to quantify, map, and follow cortical proprioceptive ("the movement sense") processing using EEG that is more widely available for CKC recordings than previously used magnetoencephalography designs, in basic research, but especially in clinical environments. We provide useful recommendations for optimal EEG derivations for cost-effective experimental designs, making it possible to scale up in sample size in future studies.


Assuntos
Eletroencefalografia/normas , Potenciais Somatossensoriais Evocados/fisiologia , Propriocepção/fisiologia , Córtex Somatossensorial/fisiologia , Adulto , Fenômenos Biomecânicos , Estudos de Viabilidade , Feminino , Dedos/fisiologia , Lateralidade Funcional/fisiologia , Humanos , Magnetoencefalografia , Masculino , Movimento/fisiologia , Reprodutibilidade dos Testes , Adulto Jovem
15.
Dev Sci ; 23(6): e12947, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32043677

RESUMO

Recent neurophysiological theories propose that the cerebral hemispheres collaborate to resolve the complex temporal nature of speech, such that left-hemisphere (or bilateral) gamma-band oscillatory activity would specialize in coding information at fast rates (phonemic information), whereas right-hemisphere delta- and theta-band activity would code for speech's slow temporal components (syllabic and prosodic information). Despite the relevance that neural entrainment to speech might have for reading acquisition and for core speech perception operations such as the perception of intelligible speech, no study had yet explored its development in young children. In the current study, speech-brain entrainment was recorded via EEG in a cohort of children at three different time points since they were 4-5 to 6-7 years of age. Our results showed that speech-brain entrainment occurred only at delta frequencies (0.5 Hz) at all testing times. The fact that, from the longitudinal perspective, coherence increased in bilateral temporal electrodes suggests that, contrary to previous hypotheses claiming for an innate right-hemispheric bias for processing prosodic information, at 7 years of age the low-frequency components of speech are processed in a bilateral manner. Lastly, delta speech-brain entrainment in the right hemisphere was related to an indirect measure of intelligibility, providing preliminary evidence that the entrainment phenomenon might support core linguistic operations since early childhood.


Assuntos
Percepção da Fala , Fala , Encéfalo , Criança , Pré-Escolar , Humanos , Leitura
16.
Neuroimage ; 203: 116177, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31513941

RESUMO

Electroencephalographic and magnetoencephalographic data have characterized two types of brain-body interactions observed during various types of motor actions, "corticokinematic" and "corticomuscular" coupling. Here, we review the literature on these interactions in healthy individuals, discuss several open debates, and outline current limitations and directions for future research. Corticokinematic coupling (commonly referred to as corticokinematic coherence) probes the relationship between activity of sensorimotor network nodes and various movement-related signals (e.g., speed, velocity, acceleration). It is mainly driven by movement rhythmicity during active, passive, and observed dynamic motor actions. It typically predominates at the primary sensorimotor cortex contralateral to the moving limb, occurs at movement frequency and its harmonics, and predominantly reflects the cortical processing of proprioceptive feedback driven by movement rhythmicity in a broad range of dynamic motor actions. Corticomuscular coupling (commonly referred to as corticomuscular coherence) probes the interaction between sensorimotor cortical rhythms and electromyographic (EMG) activity that mainly occurs during steady isometric muscle contraction. We will here focus on the ~20-Hz coupling that is observed during weak isometric contraction and is linked to the modulation of the descending motor command by the ~20-Hz sensorimotor rhythm. This review argues that corticokinematic and corticomuscular couplings have different neural bases. Corticokinematic coupling is mainly driven by afferent signals, while corticomuscular coupling is mainly (but not solely) driven by efferent signals. This distinction should be considered when investigating interactions between brain and body movements.


Assuntos
Eletroencefalografia , Eletromiografia , Magnetoencefalografia , Movimento , Córtex Sensório-Motor/fisiologia , Humanos , Atividade Motora , Contração Muscular
17.
Neuroimage ; 184: 201-213, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30205208

RESUMO

During connected speech listening, brain activity tracks speech rhythmicity at delta (∼0.5 Hz) and theta (4-8 Hz) frequencies. Here, we compared the potential of magnetoencephalography (MEG) and high-density electroencephalography (EEG) to uncover such speech brain tracking. Ten healthy right-handed adults listened to two different 5-min audio recordings, either without noise or mixed with a cocktail-party noise of equal loudness. Their brain activity was simultaneously recorded with MEG and EEG. We quantified speech brain tracking channel-by-channel using coherence, and with all channels at once by speech temporal envelope reconstruction accuracy. In both conditions, speech brain tracking was significant at delta and theta frequencies and peaked in the temporal regions with both modalities (MEG and EEG). However, in the absence of noise, speech brain tracking estimated from MEG data was significantly higher than that obtained from EEG. Furthemore, to uncover significant speech brain tracking, recordings needed to be ∼3 times longer in EEG than MEG, depending on the frequency considered (delta or theta) and the estimation method. In the presence of noise, both EEG and MEG recordings replicated the previous finding that speech brain tracking at delta frequencies is stronger with attended speech (i.e., the sound subjects are attending to) than with the global sound (i.e., the attended speech and the noise combined). Other previously reported MEG findings were replicated based on MEG but not EEG recordings: 1) speech brain tracking at theta frequencies is stronger with attended speech than with the global sound, 2) speech brain tracking at delta frequencies is stronger in noiseless than noisy conditions, and 3) when noise is added, speech brain tracking at delta frequencies dampens less in the left hemisphere than in the right hemisphere. Finally, sources of speech brain tracking reconstructed from EEG data were systematically deeper and more posterior than those derived from MEG. The present study demonstrates that speech brain tracking is better seen with MEG than EEG. Quantitatively, EEG recordings need to be ∼3 times longer than MEG recordings to uncover significant speech brain tracking. As a consequence, MEG appears more suited than EEG to pinpoint subtle effects related to speech brain tracking in a given recording time.


Assuntos
Córtex Auditivo/fisiologia , Eletroencefalografia , Magnetoencefalografia , Acústica da Fala , Estimulação Acústica , Adulto , Mapeamento Encefálico/métodos , Ritmo Delta , Feminino , Humanos , Masculino , Ruído , Ritmo Teta , Adulto Jovem
18.
Neuroimage ; 199: 313-324, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31170458

RESUMO

The human brain is functionally organized into large-scale neural networks that are dynamically interconnected. Multiple short-lived states of resting-state functional connectivity (rsFC) identified transiently synchronized networks and cross-network integration. However, little is known about the way brain couplings covary as rsFC states wax and wane. In this magnetoencephalography study, we explore the synchronization structure among the spontaneous interactions of well-known resting-state networks (RSNs). To do so, we extracted modes of dynamic coupling that reflect rsFC synchrony and analyzed their spatio-temporal features. These modes identified transient, sporadic rsFC changes characterized by the widespread integration of RSNs across the brain, most prominently in the ß band. This is in line with the metastable rsFC state model of resting-state dynamics, wherein our modes fit as state transition processes. Furthermore, the default-mode network (DMN) stood out as being structured into competitive cross-network couplings with widespread DMN-RSN interactions, especially among the ß-band modes. These results substantiate the theory that the DMN is a core network enabling dynamic global brain integration in the ß band.


Assuntos
Ondas Encefálicas/fisiologia , Conectoma/métodos , Sincronização Cortical/fisiologia , Magnetoencefalografia/métodos , Rede Nervosa/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
19.
J Neurosci ; 37(43): 10421-10437, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-28951449

RESUMO

To gain fundamental knowledge on how the brain controls motor actions, we studied in detail the interplay between MEG signals from the primary sensorimotor (SM1) cortex and the contraction force of 17 healthy adult humans (7 females, 10 males). SM1 activity was coherent at ∼20 Hz with surface electromyogram (as already extensively reported) but also with contraction force. In both cases, the effective coupling was dominant in the efferent direction. Across subjects, the level of ∼20 Hz coherence between cortex and periphery positively correlated with the "burstiness" of ∼20 Hz SM1 (Pearson r ≈ 0.65) and peripheral fluctuations (r ≈ 0.9). Thus, ∼20 Hz coherence between cortex and periphery is tightly linked to the presence of ∼20 Hz bursts in SM1 and peripheral activity. However, the very high correlation with peripheral fluctuations suggests that the periphery is the limiting factor. At frequencies <3 Hz, both SM1 signals and ∼20 Hz SM1 envelope were coherent with both force and its absolute change rate. The effective coupling dominated in the efferent direction between (1) force and the ∼20 Hz SM1 envelope and (2) the absolute change rate of the force and SM1 signals. Together, our data favor the view that ∼20 Hz coherence between cortex and periphery during isometric contraction builds on the presence of ∼20 Hz SM1 oscillations and needs not rely on feedback from the periphery. They also suggest that effective cortical proprioceptive processing operates at <3 Hz frequencies, even during steady isometric contractions.SIGNIFICANCE STATEMENT Accurate motor actions are made possible by continuous communication between the cortex and spinal motoneurons, but the neurophysiological basis of this communication is poorly understood. Using MEG recordings in humans maintaining steady isometric muscle contractions, we found evidence that the cortex sends population-level motor commands that tend to structure according to the ∼20 Hz sensorimotor rhythm, and that it dynamically adapts these commands based on the <3 Hz fluctuations of proprioceptive feedback. To our knowledge, this is the first report to give a comprehensive account of how the human brain dynamically handles the flow of proprioceptive information and converts it into appropriate motor command to keep the contraction force steady.


Assuntos
Retroalimentação Sensorial/fisiologia , Força da Mão/fisiologia , Contração Isométrica/fisiologia , Magnetoencefalografia/métodos , Músculo Esquelético/fisiologia , Córtex Sensório-Motor/fisiologia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurorretroalimentação/métodos , Estimulação Luminosa/métodos , Adulto Jovem
20.
Neuroimage ; 169: 200-211, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29247806

RESUMO

In the field of neuroimaging, researchers often resort to contrasting parametric maps to identify differences between conditions or populations. Unfortunately, contrast patterns mix effects related to amplitude and location differences and tend to peak away from sources of genuine brain activity to an extent that scales with the smoothness of the maps. Here, we illustrate this mislocation problem on source maps reconstructed from magnetoencephalographic recordings and propose a novel, dedicated location-comparison method. In realistic simulations, contrast mislocation was on average ∼10 mm when genuine sources were placed at the same location, and was still above 5 mm when sources were 20 mm apart. The dedicated location-comparison method achieved a sensitivity of ∼90% when inter-source distance was 12 mm. Its benefit is also illustrated on real brain-speech entrainment data. In conclusion, contrasts of parametric maps provide precarious information for source location. To specifically address the question of location difference, one should turn to dedicated methods as the one proposed here.


Assuntos
Mapeamento Encefálico/normas , Encéfalo/fisiologia , Interpretação Estatística de Dados , Magnetoencefalografia/normas , Processamento de Sinais Assistido por Computador , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Sensibilidade e Especificidade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA