Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158198

RESUMO

This paper considers the microwave imaging reconstruction problem, based on additive penalization and gradient-based optimization. Each evaluation of the cost function and of its gradient requires the resolution of as many high-dimensional linear systems as the number of incident fields, which represents a large amount of computations. Since all such systems involve the same matrix, we propose a block inversion strategy, based on the block-biconjugate gradient stabilized (BiCGStab) algorithm, with efficient implementations specific to the microwave imaging context. Numerical experiments performed on synthetic data and on real measurements show that savings in computing time can reach a factor of two compared to the standard, sequential, BiCGStab implementation. Improvements brought by the block approach are even more important for the most difficult reconstruction problems, that is, with high-frequency illuminations and/or highly contrasted objects. The proposed reconstruction strategy is shown to achieve satisfactory estimates for objects of the Fresnel database, even on the most contrasted ones.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32340942

RESUMO

In the context of nondestructive testing (NDT), this article proposes an inverse problem approach for the reconstruction of high-resolution ultrasonic images from full matrix capture (FMC) data sets. We build a linear model that links the FMC data, i.e., the signals collected from all transmitter-receiver pairs of an ultrasonic array, to the discretized reflectivity map of the inspected object. In particular, this model includes the ultrasonic waveform corresponding to the response of transducers. Despite a large amount of data, the inversion problem is ill-posed. Therefore, a regularization strategy is proposed, where the reconstructed image is defined as the minimizer of a penalized least-squares cost function. A mixed penalization function is considered, which simultaneously enhances the sparsity of the image (in NDT, the reflectivity map is mostly zero except at the flaw locations) and its spatial smoothness (flaws may have some spatial extension). The proposed method is shown to outperform two well-known imaging methods: the total focusing method (TFM) and Excitelet. Numerical simulations with two close reflectors show that the proposed method improves the resolution limit defined by the Rayleigh criterion by a factor of four. Such high-resolution imaging capability is confirmed by experimental results obtained with side-drilled holes in an aluminum sample.

3.
IEEE Trans Image Process ; 26(5): 2480-2493, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28252396

RESUMO

The blind structured illumination microscopy strategy proposed by Mudry et al. is fully re-founded in this paper, unveiling the central role of the sparsity of the illumination patterns in the mechanism that drives super-resolution in the method. A numerical analysis shows that the resolving power of the method can be further enhanced with optimized one-photon or two-photon speckle illuminations. A much improved numerical implementation is provided for the reconstruction problem under the image positivity constraint. This algorithm rests on a new preconditioned proximal iteration faster than existing solutions, paving the way to 3D and real-time 2D reconstruction.

4.
Artigo em Inglês | MEDLINE | ID: mdl-24960708

RESUMO

Ultrasonic inverse problems such as spike train deconvolution, synthetic aperture focusing, or tomography attempt to reconstruct spatial properties of an object (discontinuities, delaminations, flaws, etc.) from noisy and incomplete measurements. They require an accurate description of the data acquisition process. Dealing with frequency-dependent attenuation and dispersion is therefore crucial because both phenomena modify the wave shape as the travel distance increases. In an inversion context, this paper proposes to exploit a linear model of ultrasonic data taking into account attenuation and dispersion. The propagation distance is discretized to build a finite set of radiation impulse responses. Attenuation is modeled with a frequency power law and then dispersion is computed to yield physically consistent responses. Using experimental data acquired from attenuative materials, this model outperforms the standard attenuation-free model and other models of the literature. Because of model linearity, robust estimation methods can be implemented. When matched filtering is employed for single echo detection, the model that we propose yields precise estimation of the attenuation coefficient and of the sound velocity. A thickness estimation problem is also addressed through spike deconvolution, for which the proposed model also achieves accurate results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA