Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ISA Trans ; 136: 334-344, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36494215

RESUMO

In this paper, the objective is to estimate the pseudo-state of fractional order systems defined by the Caputo fractional derivative from discrete noisy output measurement. For this purpose, an innovative modulating functions method is proposed, which can provide non-asymptotic estimation within finite-time and is robust against corrupting noises. First, the proposed method is directly applied to the Brunovsky's observable canonical form of the considered system. Then, the initial value of the pseudo-state is exactly expressed by an algebraic integral formula, based on which the pseudo-state is estimated. Second, the properties and construction of the required modulating functions are studied. Furthermore, error analysis is provided in discrete noise cases, which is useful for improving the estimation accuracy. In order to show the advantages of the proposed method, two numerical examples are given, where both rational order and irrational order dynamical systems are considered. After selecting the design parameters using the provided noise error bound, the pseudo-states of considered systems are estimated. The fractional order Luenberger-like observer and the fractional order H∞-like observer are also applied. Better than the applied fractional order observers, the proposed method can guarantee the convergence speed and robustness at the same time.

2.
IEEE Trans Cybern ; 53(11): 7392-7405, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37028084

RESUMO

This work is devoted to the nonasymptotic and robust fractional derivative estimation of the pseudo-state for a class of fractional-order nonlinear systems with partial unknown terms in noisy environments. In particular, the estimation for the pseudo-state can be obtained by setting the fractional derivative's order to zero. For this purpose, the fractional derivative estimation of the pseudo-state is achieved by estimating both the initial values and the fractional derivatives of the output, thanks to the additive index law of fractional derivatives. The corresponding algorithms are established in terms of integrals by employing the classical and generalized modulating functions methods. Meanwhile, the unknown part is fitted via an innovative sliding window strategy. Moreover, error analysis in discrete noisy cases is discussed. Finally, two numerical examples are presented to verify the correctness of the theoretical results and the noise reduction efficiency.

3.
Math Biosci ; 271: 128-35, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26606994

RESUMO

Susceptible Exposed Infectious and Recovered epidemic model endowed with a treatment function (SEIR-T model) is a well-known model used to reproduce the behavior of an epidemic, where the susceptible population and the exposed population need to be estimated to predict and control the propagation of a contagious disease. This paper focuses on the nonlinear observer design for a class of nonlinear piecewise systems including SEIR-T models. For this purpose, two changes of coordinates are provided to transform the considered systems into an extended nonlinear observer normal form, on which a high gain observer can be applied. Then, the proposed method is applied to a SEIR-T model. Finally, simulation results are given to show its efficiency.


Assuntos
Doenças Transmissíveis , Epidemias , Modelos Teóricos , Dinâmica não Linear , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA