Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cell Dev Biol ; 132: 51-61, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34753687

RESUMO

The phosphatidylinositol-3-kinase (PI3K)/AKT pathway is a major regulator of metabolism, migration, survival, proliferation, and antiviral immunity. Both an overactivation and an inhibition of the PI3K/AKT pathway are related to different pathologies. Activation of this signaling pathway is tightly controlled through a multistep process and its deregulation can be associated with aberrant post-translational modifications including SUMOylation. Here, we review the complex modulation of the PI3K/AKT pathway by SUMOylation and we discuss its putative incvolvement in human disease.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase , Proteínas Proto-Oncogênicas c-akt , Sumoilação , Humanos , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais
2.
J Virol ; 94(1)2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31597768

RESUMO

Some viruses take advantage of conjugation of ubiquitin or ubiquitin-like proteins to enhance their own replication. One example is Ebola virus, which has evolved strategies to utilize these modification pathways to regulate the viral proteins VP40 and VP35 and to counteract the host defenses. Here, we show a novel mechanism by which Ebola virus exploits the ubiquitin and SUMO pathways. Our data reveal that minor matrix protein VP24 of Ebola virus is a bona fide SUMO target. Analysis of a SUMOylation-defective VP24 mutant revealed a reduced ability to block the type I interferon (IFN) pathway and to inhibit IFN-mediated STAT1 nuclear translocation, exhibiting a weaker interaction with karyopherin 5 and significantly diminished stability. Using glutathione S-transferase (GST) pulldown assay, we found that VP24 also interacts with SUMO in a noncovalent manner through a SIM domain. Mutation of the SIM domain in VP24 resulted in a complete inability of the protein to downmodulate the IFN pathway and in the monoubiquitination of the protein. We identified SUMO deubiquitinating enzyme ubiquitin-specific-processing protease 7 (USP7) as an interactor and a negative modulator of VP24 ubiquitination. Finally, we show that mutation of one ubiquitination site in VP24 potentiates the IFN modulatory activity of the viral protein and its ability to block IFN-mediated STAT1 nuclear translocation, pointing to the ubiquitination of VP24 as a negative modulator of the VP24 activity. Altogether, these results indicate that SUMO interacts with VP24 and promotes its USP7-mediated deubiquitination, playing a key role in the interference with the innate immune response mediated by the viral protein.IMPORTANCE The Ebola virus VP24 protein plays a critical role in escape of the virus from the host innate immune response. Therefore, deciphering the molecular mechanisms modulating VP24 activity may be useful to identify potential targets amenable to therapeutics. Here, we identify the cellular proteins USP7, SUMO, and ubiquitin as novel interactors and regulators of VP24. These interactions may represent novel potential targets to design new antivirals with the ability to modulate Ebola virus replication.


Assuntos
Ebolavirus/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Proteína SUMO-1/química , Peptidase 7 Específica de Ubiquitina/genética , Proteínas Virais/química , Animais , Sítios de Ligação , Chlorocebus aethiops , Ebolavirus/imunologia , Ebolavirus/patogenicidade , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Transporte Proteico , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Proteína SUMO-1/genética , Proteína SUMO-1/imunologia , Transdução de Sinais , Sumoilação , Peptidase 7 Específica de Ubiquitina/imunologia , Células Vero , Proteínas Virais/genética , Proteínas Virais/imunologia , alfa Carioferinas/genética , alfa Carioferinas/imunologia
3.
Front Cell Infect Microbiol ; 12: 960138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35967877

RESUMO

Active hypusine-modified initiation elongation factor 5A is critical for cell proliferation and differentiation, embryonic development, and innate immune response of macrophages to bacterial infection. Here, we demonstrate that both virus infection and double-stranded RNA viral mimic stimulation induce the hypusination of eIF5A. Furthermore, we show that activation of eIF5A is essential for the replication of several RNA viruses including influenza A virus, vesicular stomatitis virus, chikungunya virus, mayaro virus, una virus, zika virus, and punta toro virus. Finally, our data reveal that inhibition of eIF5A hypusination using the spermidine analog GC7 or siRNA-mediated downmodulation of eIF5A1 induce upregulation of endoplasmic reticulum stress marker proteins and trigger the transcriptional induction of interferon and interferon-stimulated genes, mechanisms that may explain the broad-spectrum antiviral activity of eIF5A inhibition.


Assuntos
Vírus de RNA , Viroses , Infecção por Zika virus , Zika virus , Antivirais , Humanos , Interferons , RNA de Cadeia Dupla , Replicação Viral
4.
Biology (Basel) ; 9(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317104

RESUMO

Cellular senescence is viewed as a mechanism to prevent malignant transformation, but when it is chronic, as occurs in age-related diseases, it may have adverse effects on cancer. Therefore, targeting senescent cells is a novel therapeutic strategy against senescence-associated diseases. In addition to its role in cancer protection, cellular senescence is also considered a mechanism to control virus replication. Both interferon treatment and some viral infections can trigger cellular senescence as a way to restrict virus replication. However, activation of the cellular senescence program is linked to the alteration of different pathways, which can be exploited by some viruses to improve their replication. It is, therefore, important to understand the potential impact of senolytic agents on viral propagation. Here we focus on the relationship between virus and cellular senescence and the reported effects of senolytic compounds on virus replication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA