Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Biol Chem ; 300(3): 105717, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311178

RESUMO

AMPA-type ionotropic glutamate receptors (AMPARs) are central to various neurological processes, including memory and learning. They assemble as homo- or heterotetramers of GluA1, GluA2, GluA3, and GluA4 subunits, each consisting of an N-terminal domain (NTD), a ligand-binding domain, a transmembrane domain, and a C-terminal domain. While AMPAR gating is primarily controlled by reconfiguration in the ligand-binding domain layer, our study focuses on the NTDs, which also influence gating, yet the underlying mechanism remains enigmatic. In this investigation, we employ molecular dynamics simulations to evaluate the NTD interface strength in GluA1, GluA2, and NTD mutants GluA2-H229N and GluA1-N222H. Our findings reveal that GluA1 has a significantly weaker NTD interface than GluA2. The NTD interface of GluA2 can be weakened by a single point mutation in the NTD dimer-of-dimer interface, namely H229N, which renders GluA2 more GluA1-like. Electrophysiology recordings demonstrate that this mutation also leads to slower recovery from desensitization. Moreover, we observe that lowering the pH induces more splayed NTD states and enhances desensitization in GluA2. We hypothesized that H229 was responsible for this pH sensitivity; however, GluA2-H229N was also affected by pH, meaning that H229 is not solely responsible and that protons exert their effect across multiple domains of the AMPAR. In summary, our work unveils an allosteric connection between the NTD interface strength and AMPAR desensitization.


Assuntos
Receptores de AMPA , Humanos , Células HEK293 , Ligantes , Simulação de Dinâmica Molecular , Mutação , Domínios Proteicos , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Regulação Alostérica
2.
J Neurosci ; 43(16): 2837-2849, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36931708

RESUMO

Alternative splicing of AMPA-type glutamate receptors (AMPARs) and allosteric modulation by auxiliary subunits, such as transmembrane AMPAR regulatory proteins (TARPs), are two important mechanisms that regulate the time course of glutamatergic neurotransmission. Prior work has shown that alternative splicing of the flip/flop cassette profoundly regulates TARP γ2 modulation, where flip receptor gating exhibits robust sensitivity to TARPs while flop isoforms are relatively insensitive to TARP modulation. Whether this splice variant-specific regulation extends to other auxiliary subunit families, such as cornichons (CNIHs), GSG1L, or CKAMPs, remains unknown. Here, we demonstrate that CNIH-3 modulation is unaffected by AMPAR alternative splicing due to inherent differences in how CNIH-3 and TARP γ2 modify channel gating. CNIH-3 slows receptor deactivation from the outset of current decay, consistent with structural evidence showing its point of contact at the level of the pore. In contrast, TARP γ2 acts via the KGK site of the ligand-binding domain (LBD) to slow the onset of desensitization. Although GSG1L and CKAMP44 primarily slow recovery from desensitization, their effects on channel gating are unaffected by alternative splicing, further underlining that structural events leading to the onset and recovery from desensitization are separable. Together, this work establishes that alternative splicing and TARP auxiliary subunits form a unique partnership that governs fast glutamatergic signaling at central synapses. Since proteomic studies suggest that all native AMPARs co-assemble with at least two TARPs, allosteric coupling between the flip/flop cassette and TARPs may represent a common design element in all AMPAR complexes of the mammalian brain.SIGNIFICANCE STATEMENT All fast excitatory neurotransmission in the mammalian brain is mediated by AMPA-type glutamate receptors (AMPARs). The time course of AMPAR gating can be regulated by two distinct mechanisms: alternative splicing of the flip/flop cassette and association with auxiliary subunits. Although these regulatory mechanisms have been well studied individually, it is not clear whether alternative splicing impacts auxiliary protein modulation of AMPARs. Here, we compare the four main families of AMPAR auxiliary subunits, transmembrane AMPAR regulatory proteins (TARPs; γ2), cornichons (CNIH-3), GSG1L and CKAMPs (CKAMP44), and find a privileged relationship between TARPs and the flip/flop cassette that is not shared by others. The flop cassette acts as a master switch to override TARP action, and this coupling represents a way to fine-tune AMPAR signaling.


Assuntos
Processamento Alternativo , Receptores de AMPA , Animais , Receptores de AMPA/metabolismo , Processamento Alternativo/genética , Proteômica , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Ácido Glutâmico/metabolismo , Mamíferos
3.
Pharmacol Rev ; 73(4): 298-487, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34753794

RESUMO

Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.


Assuntos
Receptores de Glutamato , Receptores Ionotrópicos de Glutamato , Animais , Sistema Nervoso Central , Ácido Glutâmico , Humanos , Neurotransmissores , Receptores Ionotrópicos de Glutamato/genética
4.
J Neurosci ; 40(17): 3348-3359, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32169968

RESUMO

Nitric oxide (NO) is an important signaling molecule that fulfills diverse functional roles as a neurotransmitter or diffusible second messenger in the developing and adult CNS. Although the impact of NO on different behaviors such as movement, sleep, learning, and memory has been well documented, the identity of its molecular and cellular targets is still an area of ongoing investigation. Here, we identify a novel role for NO in strengthening inhibitory GABAA receptor-mediated transmission in molecular layer interneurons of the mouse cerebellum. NO levels are elevated by the activity of neuronal NO synthase (nNOS) following Ca2+ entry through extrasynaptic NMDA-type ionotropic glutamate receptors (NMDARs). NO activates protein kinase G with the subsequent production of cGMP, which prompts the stimulation of NADPH oxidase and protein kinase C (PKC). The activation of PKC promotes the selective strengthening of α3-containing GABAARs synapses through a GΑΒΑ receptor-associated protein-dependent mechanism. Given the widespread but cell type-specific expression of the NMDAR/nNOS complex in the mammalian brain, our data suggest that NMDARs may uniquely strengthen inhibitory GABAergic transmission in these cells through a novel NO-mediated pathway.SIGNIFICANCE STATEMENT Long-term changes in the efficacy of GABAergic transmission is mediated by multiple presynaptic and postsynaptic mechanisms. A prominent pathway involves crosstalk between excitatory and inhibitory synapses whereby Ca2+-entering through postsynaptic NMDARs promotes the recruitment and strengthening of GABAA receptor synapses via Ca2+/calmodulin-dependent protein kinase II. Although Ca2+ transport by NMDARs is also tightly coupled to nNOS activity and NO production, it has yet to be determined whether this pathway affects inhibitory synapses. Here, we show that activation of NMDARs trigger a NO-dependent pathway that strengthens inhibitory GABAergic synapses of cerebellar molecular layer interneurons. Given the widespread expression of NMDARs and nNOS in the mammalian brain, we speculate that NO control of GABAergic synapse efficacy may be more widespread than has been appreciated.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Cerebelo/metabolismo , Interneurônios/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais/fisiologia , Animais , Cerebelo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Interneurônios/efeitos dos fármacos , Masculino , Camundongos , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Técnicas de Patch-Clamp , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
5.
J Physiol ; 599(2): 647-665, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33146903

RESUMO

KEY POINTS: We show that NMDA receptors (NMDARs) elicit a long-term increase in the firing rates of inhibitory stellate cells of the cerebellum NMDARs induce intrinsic plasticity through a Ca2+ - and CaMKII-dependent pathway that drives shifts in the activation and inactivation properties of voltage-gated Na+ (Nav ) channels An identical Ca2+ - and CaMKII-dependent signalling pathway is triggered during whole-cell recording which lowers the action potential threshold by causing a hyperpolarizing shift in the gating properties of Nav channels. Our findings open the more general possibility that NMDAR-mediated intrinsic plasticity found in other cerebellar neurons may involve similar shifts in Nav channel gating. ABSTRACT: Memory storage in the mammalian brain is mediated not only by long-lasting changes in the efficacy of neurotransmitter receptors but also by long-term modifications to the activity of voltage-gated ion channels. Activity-dependent plasticity of voltage-gated ion channels, or intrinsic plasticity, is found throughout the brain in virtually all neuronal types, including principal cells and interneurons. Although intrinsic plasticity has been identified in neurons of the cerebellum, it has yet to be studied in inhibitory cerebellar stellate cells of the molecular layer which regulate activity outflow from the cerebellar cortex by feedforward inhibition onto Purkinje cells. The study of intrinsic plasticity in stellate cells has been particularly challenging as membrane patch breakthrough in electrophysiology experiments unintentionally triggers changes in spontaneous firing rates. Using cell-attached patch recordings to avoid disruption, we show that activation of extrasynaptic N-methyl-d-aspartate receptors (NMDARs) elicits a long-term increase in the firing properties of stellate cells by stimulating a rise in cytosolic Ca2+ and activation of Ca²âº/calmodulin-dependent protein kinase II (CaMKII). An identical signalling pathway is triggered during whole-cell recording which lowers the action potential threshold by causing a hyperpolarizing shift in the gating properties of voltage-gated sodium (Nav ) channels. Together, our findings identify an unappreciated role of Nav channel-dependent intrinsic plasticity in cerebellar stellate cells which, in concert with non-canonical NMDAR signalling, provides the cerebellum with an unconventional mechanism to fine-tune motor behaviour.


Assuntos
Cerebelo , Receptores de N-Metil-D-Aspartato , Potenciais de Ação , Animais , Cerebelo/metabolismo , Técnicas de Patch-Clamp , Receptores de N-Metil-D-Aspartato/metabolismo , Sódio
6.
PLoS Comput Biol ; 16(12): e1008463, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33315892

RESUMO

Cerebellar stellate cells (CSCs) are spontaneously active, tonically firing (5-30 Hz), inhibitory interneurons that synapse onto Purkinje cells. We previously analyzed the excitability properties of CSCs, focusing on four key features: type I excitability, non-monotonic first-spike latency, switching in responsiveness and runup (i.e., temporal increase in excitability during whole-cell configuration). In this study, we extend this analysis by using whole-cell configuration to show that these neurons can also burst when treated with certain pharmacological agents separately or jointly. Indeed, treatment with 4-Aminopyridine (4-AP), a partial blocker of delayed rectifier and A-type K+ channels, at low doses induces a bursting profile in CSCs significantly different than that produced at high doses or when it is applied at low doses but with cadmium (Cd2+), a blocker of high voltage-activated (HVA) Ca2+ channels. By expanding a previously revised Hodgkin-Huxley type model, through the inclusion of Ca2+-activated K+ (K(Ca)) and HVA currents, we explain how these bursts are generated and what their underlying dynamics are. Specifically, we demonstrate that the expanded model preserves the four excitability features of CSCs, as well as captures their bursting patterns induced by 4-AP and Cd2+. Model investigation reveals that 4-AP is potentiating HVA, inducing square-wave bursting at low doses and pseudo-plateau bursting at high doses, whereas Cd2+ is potentiating K(Ca), inducing pseudo-plateau bursting when applied in combination with low doses of 4-AP. Using bifurcation analysis, we show that spike adding in square-wave bursts is non-sequential when gradually changing HVA and K(Ca) maximum conductances, delayed Hopf is responsible for generating the plateau segment within the active phase of pseudo-plateau bursts, and bursting can become "chaotic" when HVA and K(Ca) maximum conductances are made low and high, respectively. These results highlight the secondary effects of the drugs applied and suggest that CSCs have all the ingredients needed for bursting.


Assuntos
4-Aminopiridina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Cádmio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Cerebelo/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Células de Purkinje/efeitos dos fármacos , 4-Aminopiridina/administração & dosagem , Animais , Cádmio/administração & dosagem , Cerebelo/citologia , Cerebelo/fisiologia , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Técnicas de Patch-Clamp , Células de Purkinje/fisiologia
7.
Neural Comput ; 32(3): 626-658, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31951795

RESUMO

Cerebellar stellate cells form inhibitory synapses with Purkinje cells, the sole output of the cerebellum. Upon stimulation by a pair of varying inhibitory and fixed excitatory presynaptic inputs, these cells do not respond to excitation (i.e., do not generate an action potential) when the magnitude of the inhibition is within a given range, but they do respond outside this range. We previously used a revised Hodgkin-Huxley type of model to study the nonmonotonic first-spike latency of these cells and their temporal increase in excitability in whole cell configuration (termed run-up). Here, we recompute these latency profiles using the same model by adapting an efficient computational technique, the two-point boundary value problem, that is combined with the continuation method. We then extend the study to investigate how switching in responsiveness, upon stimulation with presynaptic inputs, manifests itself in the context of run-up. A three-dimensional reduced model is initially derived from the original six-dimensional model and then analyzed to demonstrate that both models exhibit type 1 excitability possessing a saddle-node on an invariant cycle (SNIC) bifurcation when varying the amplitude of Iapp. Using slow-fast analysis, we show that the original model possesses three equilibria lying at the intersection of the critical manifold of the fast subsystem and the nullcline of the slow variable hA (the inactivation of the A-type K+ channel), the middle equilibrium is of saddle type with two-dimensional stable manifold (computed from the reduced model) acting as a boundary between the responsive and non-responsive regimes, and the (ghost of) SNIC is formed when the hA-nullcline is (nearly) tangential to the critical manifold. We also show that the slow dynamics associated with (the ghost of) the SNIC and the lower stable branch of the critical manifold are responsible for generating the nonmonotonic first-spike latency. These results thus provide important insight into the complex dynamics of stellate cells.


Assuntos
Cerebelo/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Cerebelo/citologia , Humanos , Neurônios/citologia
8.
J Biol Chem ; 293(48): 18789-18802, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30333231

RESUMO

Most excitatory neurotransmission in the mammalian brain is mediated by a family of plasma membrane-bound signaling proteins called ionotropic glutamate receptors (iGluRs). iGluRs assemble at central synapses as tetramers, forming a central ion-channel pore whose primary function is to rapidly transport Na+ and Ca2+ in response to binding the neurotransmitter l-glutamic acid. The pore of iGluRs is also accessible to bulkier cytoplasmic cations, such as the polyamines spermine, spermidine, and putrescine, which are drawn into the permeation pathway, but get stuck and block the movement of other ions. The degree of this polyamine-mediated channel block is highly regulated by processes that control the free cytoplasmic polyamine concentration, the membrane potential, or the iGluR subunit composition. Recently, an additional regulation by auxiliary proteins, most notably transmembrane AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor regulatory proteins (TARPs), cornichons, and neuropilin and tolloid-like proteins (NETOs), has been identified. Here, I review what we have learned of polyamine block of iGluRs and its regulation by auxiliary subunits. TARPs, cornichons, and NETOs attenuate the channel block by enabling polyamines to exit the pore. As a result, polyamine permeation occurs at more negative and physiologically relevant membrane potentials. The structural basis for enhanced polyamine transport remains unresolved, although alterations in both channel architecture and charge-screening mechanisms have been proposed. That auxiliary subunits can attenuate the polyamine block reveals an unappreciated impact of polyamine permeation in shaping the signaling properties of neuronal AMPA- and kainate-type iGluRs. Moreover, enhanced polyamine transport through iGluRs may have a role in regulating cellular polyamine levels.


Assuntos
Poliaminas/metabolismo , Proteínas/fisiologia , Receptores Ionotrópicos de Glutamato/antagonistas & inibidores , Animais , Transporte Biológico , Sistema Nervoso Central/metabolismo , Neoplasias/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Receptores Ionotrópicos de Glutamato/química
9.
J Biol Chem ; 292(32): 13258-13270, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28637867

RESUMO

The ß-secretase (BACE1) initiates processing of the amyloid precursor protein (APP) into Aß peptides, which have been implicated as central players in the pathology of Alzheimer disease. BACE1 has been described as a copper-binding protein and its oligomeric state as being monomeric, dimeric, and/or multimeric, but the native cellular stoichiometry has remained elusive. Here, by using single-molecule fluorescence and in vitro cross-linking experiments with photo-activatable unnatural amino acids, we show that full-length BACE1, independently of its subcellular localization, exists as trimers in human cells. We found that trimerization requires the BACE1 transmembrane sequences (TMSs) and cytoplasmic domains, with residues Ala463 and Cys466 buried within the trimer interface of the sulfur-rich core of the TMSs. Our 3D model predicts that the sulfur-rich core of the trimeric BACE1 TMS is accessible to metal ions, but copper ions did not trigger trimerization. The results of functional assays of endogenous BACE1 suggest that it has a role in intracellular copper compartmentalization by transferring cytosolic copper to intracellular compartments, while leaving the overall cellular copper concentration unaltered. Adding to existing physiological models, our results provide novel insight into the atypical interactions between copper and BACE1 and into its non-enzymatic activities. In conclusion, therapeutic Alzheimer disease prevention strategies aimed at decreasing BACE1 protein levels should be regarded with caution, because adverse effects in copper homeostasis may occur.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Cobre/metabolismo , Citosol/metabolismo , Modelos Moleculares , Alanina/química , Substituição de Aminoácidos , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/genética , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Cisteína/química , Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Mutação Puntual , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Interferência de RNA , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
10.
Biophys J ; 113(10): 2173-2177, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-28935133

RESUMO

Kainate receptors require the presence of external ions for gating. Most work thus far has been performed on homomeric GluK2 but, in vivo, kainate receptors are likely heterotetramers. Agonists bind to the ligand-binding domain (LBD) which is arranged as a dimer of dimers as exemplified in homomeric structures, but no high-resolution structure currently exists of heteromeric kainate receptors. In a full-length heterotetramer, the LBDs could potentially be arranged either as a GluK2 homomer alongside a GluK5 homomer or as two GluK2/K5 heterodimers. We have constructed models of the LBD dimers based on the GluK2 LBD crystal structures and investigated their stability with molecular dynamics simulations. We have then used the models to make predictions about the functional behavior of the full-length GluK2/K5 receptor, which we confirmed via electrophysiological recordings. A key prediction and observation is that lithium ions bind to the dimer interface of GluK2/K5 heteromers and slow their desensitization.


Assuntos
Modelos Moleculares , Multimerização Proteica , Receptores de Ácido Caínico/química , Receptores de Ácido Caínico/metabolismo , Glutamatos/metabolismo , Ligantes , Lítio/farmacologia , Domínios Proteicos , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína
12.
J Neurosci ; 35(26): 9676-88, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26134650

RESUMO

Activity-dependent strengthening of central synapses is a key factor driving neuronal circuit behavior in the vertebrate CNS. At fast inhibitory synapses, strengthening is thought to occur by increasing the number of GABAA receptors (GABARs) of the same subunit composition to preexisting synapses. Here, we show that strengthening of mouse cerebellar granule cell GABAergic synapses occurs by a different mechanism. Specifically, we show that the neuropeptide hormone, insulin, strengthens inhibitory synapses by recruiting α6-containing GABARs rather than accumulating more α1-containing receptors that are resident to the synapse. Because α6-receptors are targeted to functionally distinct postsynaptic sites from α1-receptors, we conclude that only a subset of all inhibitory synapses are strengthened. Together with our recent findings on stellate cells, we propose a general mechanism by which mature inhibitory synapses are strengthened. In this scenario, α1-GABARs resident to inhibitory synapses form the hardwiring of neuronal circuits with receptors of a different composition fulfilling a fundamental, but unappreciated, role in synapse strengthening.


Assuntos
Cerebelo/citologia , Hipoglicemiantes/farmacologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Insulina/farmacologia , Neurônios/efeitos dos fármacos , Receptores de GABA-A/metabolismo , 2-Amino-5-fosfonovalerato/farmacologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Animais , Animais Recém-Nascidos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Furosemida/farmacologia , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de GABA-A/genética , Inibidores de Simportadores de Cloreto de Sódio e Potássio/farmacologia , Sinapses/efeitos dos fármacos , Sinapses/genética , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Fatores de Tempo , Ácido gama-Aminobutírico/farmacologia
13.
J Neurosci ; 35(35): 12088-102, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26338321

RESUMO

Loss of vision in glaucoma results from the selective death of retinal ganglion cells (RGCs). Tumor necrosis factor α (TNFα) signaling has been linked to RGC damage, however, the mechanism by which TNFα promotes neuronal death remains poorly defined. Using an in vivo rat glaucoma model, we show that TNFα is upregulated by Müller cells and microglia/macrophages soon after induction of ocular hypertension. Administration of XPro1595, a selective inhibitor of soluble TNFα, effectively protects RGC soma and axons. Using cobalt permeability assays, we further demonstrate that endogenous soluble TNFα triggers the upregulation of Ca(2+)-permeable AMPA receptor (CP-AMPAR) expression in RGCs of glaucomatous eyes. CP-AMPAR activation is not caused by defects in GluA2 subunit mRNA editing, but rather reflects selective downregulation of GluA2 in neurons exposed to elevated eye pressure. Intraocular administration of selective CP-AMPAR blockers promotes robust RGC survival supporting a critical role for non-NMDA glutamate receptors in neuronal death. Our study identifies glia-derived soluble TNFα as a major inducer of RGC death through activation of CP-AMPARs, thereby establishing a novel link between neuroinflammation and cell loss in glaucoma. SIGNIFICANCE STATEMENT: Tumor necrosis factor α (TNFα) has been implicated in retinal ganglion cell (RGC) death, but how TNFα exerts this effect is poorly understood. We report that ocular hypertension, a major risk factor in glaucoma, upregulates TNFα production by Müller cells and microglia. Inhibition of soluble TNFα using a dominant-negative strategy effectively promotes RGC survival. We find that TNFα stimulates the expression of calcium-permeable AMPA receptors (CP-AMPAR) in RGCs, a response that does not depend on abnormal GluA2 mRNA editing but on selective downregulation of the GluA2 subunit by these neurons. Consistent with this, CP-AMPAR blockers promote robust RGC survival supporting a critical role for non-NMDA glutamate receptors in glaucomatous damage. This study identifies a novel mechanism by which glia-derived soluble TNFα modulates neuronal death in glaucoma.


Assuntos
Cálcio/metabolismo , Glaucoma/patologia , Receptores de AMPA/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Morte Celular/efeitos dos fármacos , Colina O-Acetiltransferase/metabolismo , Cobalto/metabolismo , Modelos Animais de Doenças , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Glaucoma/induzido quimicamente , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Ratos , Receptores de AMPA/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Solução Salina Hipertônica/toxicidade , Fator de Necrose Tumoral alfa/farmacologia , Regulação para Cima/fisiologia
15.
J Physiol ; 594(7): 1821-40, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26682513

RESUMO

KEY POINTS: Kainate receptor heteromerization and auxiliary subunits, Neto1 and Neto2, attenuate polyamine ion-channel block by facilitating blocker permeation. Relief of polyamine block in GluK2/GluK5 heteromers results from a key proline residue that produces architectural changes in the channel pore α-helical region. Auxiliary subunits exert an additive effect to heteromerization, and thus relief of polyamine block is due to a different mechanism. Our findings have broad implications for work on polyamine block of other cation-selective ion channels. ABSTRACT: Channel block and permeation by cytoplasmic polyamines is a common feature of many cation-selective ion channels. Although the channel block mechanism has been studied extensively, polyamine permeation has been considered less significant as it occurs at extreme positive membrane potentials. Here, we show that kainate receptor (KAR) heteromerization and association with auxiliary proteins, Neto1 and Neto2, attenuate polyamine block by enhancing blocker permeation. Consequently, polyamine permeation and unblock occur at more negative and physiologically relevant membrane potentials. In GluK2/GluK5 heteromers, enhanced permeation is due to a single proline residue in GluK5 that alters the dynamics of the α-helical region of the selectivity filter. The effect of auxiliary proteins is additive, and therefore the structural basis of polyamine permeation and unblock is through a different mechanism. As native receptors are thought to assemble as heteromers in complex with auxiliary proteins, our data identify an unappreciated impact of polyamine permeation in shaping the signalling properties of neuronal KARs and point to a structural mechanism that may be shared amongst other cation-selective ion channels.


Assuntos
Ativação do Canal Iônico , Lipoproteínas LDL/metabolismo , Proteínas de Membrana/metabolismo , Poliaminas/metabolismo , Receptores de Ácido Caínico/metabolismo , Animais , Células HEK293 , Humanos , Proteínas Relacionadas a Receptor de LDL , Potenciais da Membrana , Camundongos , Domínios Proteicos , Ratos , Receptores de N-Metil-D-Aspartato , Receptor de GluK2 Cainato
16.
J Neurosci ; 34(32): 10624-34, 2014 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-25100596

RESUMO

Hydrogen peroxide (H2O2), a key reactive oxygen species, is produced at low levels during normal cellular metabolism and at higher concentrations under pathological conditions such as ischemia-reperfusion injury. The mechanisms by which H2O2 contributes to physiological and pathological processes in the brain remain poorly understood. Inhibitory GABA type A (GABAA) receptors critically regulate brain function by generating tonic and synaptic currents; however, it remains unknown whether H2O2 directly modulates GABAA receptor function. Here, we performed patch-clamp recordings, together with pharmacological and genetic approaches, to investigate the effects of H2O2 on GABAA receptor-mediated tonic and synaptic currents recorded in cultured mouse hippocampal neurons and CA1 pyramidal neurons in hippocampal slices. We found that H2O2 caused a dramatic increase in tonic current, whereas synaptic currents were unaffected. This increase in tonic current resulted from an extracellular oxidative reaction, which increased the potency of GABA, but only when GABAA receptors were activated by low concentrations of GABA. Oxygen-glucose deprivation, which produces high endogenous levels of H2O2, similarly increased the tonic current. These results suggest that GABAA receptor-mediated tonic current, which is potentiated by H2O2, might contribute to H2O2-induced brain dysfunction.


Assuntos
Hipocampo/citologia , Peróxido de Hidrogênio/farmacologia , Neurônios/efeitos dos fármacos , Oxidantes/farmacologia , Receptores de GABA-A/metabolismo , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Embrião de Mamíferos , Glucose/deficiência , Hipóxia/patologia , Hipóxia/fisiopatologia , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Espécies Reativas de Oxigênio/metabolismo , Receptores de GABA-A/genética
17.
J Physiol ; 593(1): 97-110, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25556791

RESUMO

Ionotropic glutamate receptors (iGluRs) are the major excitatory neurotransmitter receptor in the vertebrate CNS and, as a result, their activation properties lie at the heart of much of the neuronal network activity observed in the developing and adult brain. iGluRs have also been implicated in many nervous system disorders associated with postnatal development (e.g. autism, schizophrenia), cerebral insult (e.g. stroke, epilepsy), and disorders of the ageing brain (e.g. Alzheimer's disease, Parkinsonism). In view of this, an emphasis has been placed on understanding how iGluRs activate and desensitize in functional and structural terms. Early structural models of iGluRs suggested that the strength of the agonist response was primarily governed by the degree of closure induced in the ligand-binding domain (LBD). However, recent studies have suggested a more nuanced role for the LBD with current evidence identifying the iGluR LBD interface as a "hotspot" regulating agonist behaviour. Such ideas remain to be consolidated with recently solved structures of full-length iGluRs to account for the global changes that underlie channel activation and desensitization.


Assuntos
Receptores de Glutamato/química , Receptores de Glutamato/metabolismo , Animais , Sítios de Ligação , Agonistas de Aminoácidos Excitatórios/farmacologia , Modelos Moleculares , Conformação Proteica , Multimerização Proteica
18.
Bioorg Med Chem Lett ; 25(11): 2416-20, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25913117

RESUMO

KA receptors have shown to be potential therapeutic targets in CNS diseases such as schizophrenia, depression, neuropathic pain and epilepsy. Through the use of our docking tool Fitted, we investigated the relationship between ligand activity towards GluK2 and the conformational state induced at the receptor level. By focusing our rational design on the interaction between the ligand and a tyrosine residue in the binding site, we synthesized a series of molecules based on a glutamate scaffold, and carried out electrophysiological recordings. The observed ability of some of these molecules to inhibit receptor activation shows the potential of our design for the development of effective antagonists with a molecular size comparable to that of the endogenous neurotransmitter L-glutamate.


Assuntos
Fármacos do Sistema Nervoso Central/química , Fármacos do Sistema Nervoso Central/farmacologia , Receptores de Ácido Caínico/antagonistas & inibidores , Domínio Catalítico , Descoberta de Drogas , Ligantes , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Software , Receptor de GluK2 Cainato
19.
Nat Struct Mol Biol ; 31(4): 688-700, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409505

RESUMO

Alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid receptors (AMPARs) are cation-selective ion channels that mediate most fast excitatory neurotransmission in the brain. Although their gating mechanism has been studied extensively, understanding how cations traverse the pore has remained elusive. Here we investigated putative ion and water densities in the open pore of Ca2+-permeable AMPARs (rat GRIA2 flip-Q isoform) at 2.3-2.6 Å resolution. We show that the ion permeation pathway attains an extracellular Ca2+ binding site (site-G) when the channel gate moves into the open configuration. Site-G is highly selective for Ca2+ over Na+, favoring the movement of Ca2+ into the selectivity filter of the pore. Seizure-related N619K mutation, adjacent to site-G, promotes channel opening but attenuates Ca2+ binding and thus diminishes Ca2+ permeability. Our work identifies the importance of site-G, which coordinates with the Q/R site of the selectivity filter to ensure the preferential transport of Ca2+ through the channel pore.


Assuntos
Receptores de AMPA , Ratos , Animais , Receptores de AMPA/genética , Mutação , Cátions , Transporte de Íons , Sítios de Ligação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA