Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
J Biol Chem ; 299(1): 102769, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470427

RESUMO

Programmed death-ligand 1 (PD-L1) is a key immune regulatory protein that interacts with programmed cell death protein 1 (PD-1), leading to T-cell suppression. Whilst this interaction is key in self-tolerance, cancer cells evade the immune system by overexpressing PD-L1. Inhibition of the PD-1/PD-L1 pathway with standard monoclonal antibodies has proven a highly effective cancer treatment; however, single domain antibodies (VHH) may offer numerous potential benefits. Here, we report the identification and characterization of a diverse panel of 16 novel VHHs specific to PD-L1. The panel of VHHs demonstrate affinities of 0.7 nM to 5.1 µM and were able to completely inhibit PD-1 binding to PD-L1. The binding site for each VHH on PD-L1 was determined using NMR chemical shift perturbation mapping and revealed a common binding surface encompassing the PD-1-binding site. Additionally, we solved crystal structures of two representative VHHs in complex with PD-L1, which revealed unique binding modes. Similar NMR experiments were used to identify the binding site of CD80 on PD-L1, which is another immune response regulatory element and interacts with PD-L1 localized on the same cell surface. CD80 and PD-1 were revealed to share a highly overlapping binding site on PD-L1, with the panel of VHHs identified expected to inhibit CD80 binding. Comparison of the CD80 and PD-1 binding sites on PD-L1 enabled the identification of a potential antibody binding region able to confer specificity for the inhibition of PD-1 binding only, which may offer therapeutic benefits to counteract cancer cell evasion of the immune system.


Assuntos
Anticorpos , Antígeno B7-1 , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Humanos , Antígeno B7-1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias/terapia , Receptor de Morte Celular Programada 1/metabolismo , Ligação Proteica , Sítios de Ligação , Cristalografia , Anticorpos/química , Anticorpos/metabolismo
2.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446375

RESUMO

The identification of multiple simultaneous orientations of small molecule inhibitors binding to a protein target is a common challenge. It has recently been reported that the conformational heterogeneity of ligands is widely underreported in the Protein Data Bank, which is likely to impede optimal exploitation to improve affinity of these ligands. Significantly less is even known about multiple binding orientations for fragments (<300 Da), although this information would be essential for subsequent fragment optimisation using growing, linking or merging and rational structure-based design. Here, we use recently reported fragment hits for the SARS-CoV-2 non-structural protein 1 (nsp1) N-terminal domain to propose a general procedure for unambiguously identifying binding orientations of 2-dimensional fragments containing either sulphur or chloro substituents within the wavelength range of most tunable beamlines. By measuring datasets at two energies, using a tunable beamline operating in vacuum and optimised for data collection at very low X-ray energies, we show that the anomalous signal can be used to identify multiple orientations in small fragments containing sulphur and/or chloro substituents or to verify recently reported conformations. Although in this specific case we identified the positions of sulphur and chlorine in fragments bound to their protein target, we are confident that this work can be further expanded to additional atoms or ions which often occur in fragments. Finally, our improvements in the understanding of binding orientations will also serve to improve the rational optimisation of SARS-CoV-2 nsp1 fragment hits.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Elétrons , Ligantes , Síncrotrons
3.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36293303

RESUMO

The regular reappearance of coronavirus (CoV) outbreaks over the past 20 years has caused significant health consequences and financial burdens worldwide. The most recent and still ongoing novel CoV pandemic, caused by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) has brought a range of devastating consequences. Due to the exceptionally fast development of vaccines, the mortality rate of the virus has been curbed to a significant extent. However, the limitations of vaccination efficiency and applicability, coupled with the still high infection rate, emphasise the urgent need for discovering safe and effective antivirals against SARS-CoV-2 by suppressing its replication or attenuating its virulence. Non-structural protein 1 (nsp1), a unique viral and conserved leader protein, is a crucial virulence factor for causing host mRNA degradation, suppressing interferon (IFN) expression and host antiviral signalling pathways. In view of the essential role of nsp1 in the CoV life cycle, it is regarded as an exploitable target for antiviral drug discovery. Here, we report a variety of fragment hits against the N-terminal domain of SARS-CoV-2 nsp1 identified by fragment-based screening via X-ray crystallography. We also determined the structure of nsp1 at atomic resolution (0.99 Å). Binding affinities of hits against nsp1 and potential stabilisation were determined by orthogonal biophysical assays such as microscale thermophoresis and thermal shift assays. We identified two ligand-binding sites on nsp1, one deep and one shallow pocket, which are not conserved between the three medically relevant SARS, SARS-CoV-2 and MERS coronaviruses. Our study provides an excellent starting point for the development of more potent nsp1-targeting inhibitors and functional studies on SARS-CoV-2 nsp1.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Proteínas não Estruturais Virais/metabolismo , Ligantes , Raios X , Sítios de Ligação , Antivirais/farmacologia , Interferons , Fatores de Virulência
4.
J Synchrotron Radiat ; 26(Pt 2): 393-405, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30855248

RESUMO

MXCuBE2 is the second-generation evolution of the MXCuBE beamline control software, initially developed and used at ESRF - the European Synchrotron. MXCuBE2 extends, in an intuitive graphical user interface (GUI), the functionalities and data collection methods available to users while keeping all previously available features and allowing for the straightforward incorporation of ongoing and future developments. MXCuBE2 introduces an extended abstraction layer that allows easy interfacing of any kind of macromolecular crystallography (MX) hardware component, whether this is a diffractometer, sample changer, detector or optical element. MXCuBE2 also works in strong synergy with the ISPyB Laboratory Information Management System, accessing the list of samples available for a particular experimental session and associating, either from instructions contained in ISPyB or from user input via the MXCuBE2 GUI, different data collection types to them. The development of MXCuBE2 forms the core of a fruitful collaboration which brings together several European synchrotrons and a software development factory and, as such, defines a new paradigm for the development of beamline control platforms for the European MX user community.

5.
Biochem J ; 475(22): 3561-3576, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30348641

RESUMO

Whereas enzymes in the fumarylacetoacetate hydrolase (FAH) superfamily catalyze several distinct chemical reactions, the structural basis for their multi-functionality remains elusive. As a well-studied example, human FAH domain-containing protein 1 (FAHD1) is a mitochondrial protein displaying both acylpyruvate hydrolase (ApH) and oxaloacetate decarboxylase (ODx) activity. As mitochondrial ODx, FAHD1 acts antagonistically to pyruvate carboxylase, a key metabolic enzyme. Despite its importance for mitochondrial function, very little is known about the catalytic mechanisms underlying FAHD1 enzymatic activities, and the architecture of its ligated active site is currently ill defined. We present crystallographic data of human FAHD1 that provide new insights into the structure of the catalytic center at high resolution, featuring a flexible 'lid'-like helical region which folds into a helical structure upon binding of the ODx inhibitor oxalate. The oxalate-driven structural transition results in the generation of a potential catalytic triad consisting of E33, H30 and an associated water molecule. In silico docking studies indicate that the substrate is further stabilized by a complex hydrogen-bond network, involving amino acids Q109 and K123, identified herein as potential key residues for FAHD1 catalytic activity. Mutation of amino acids H30, E33 and K123 each had discernible influence on the ApH and/or ODx activity of FAHD1, suggesting distinct catalytic mechanisms for both activities. The structural analysis presented here provides a defined structural map of the active site of FAHD1 and contributes to a better understanding of the FAH superfamily of enzymes.


Assuntos
Aminoácidos/metabolismo , Carboxiliases/metabolismo , Hidrolases/metabolismo , Proteínas Mitocondriais/metabolismo , Aminoácidos/química , Aminoácidos/genética , Carboxiliases/química , Carboxiliases/genética , Domínio Catalítico , Cristalografia por Raios X , Humanos , Hidrolases/química , Hidrolases/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Modelos Moleculares , Mutação , Conformação Proteica , Piruvatos/química , Piruvatos/metabolismo , Especificidade por Substrato
6.
Proc Natl Acad Sci U S A ; 111(34): 12384-9, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25104750

RESUMO

ß-Phosphoglucomutase (ßPGM) catalyzes isomerization of ß-D-glucose 1-phosphate (ßG1P) into D-glucose 6-phosphate (G6P) via sequential phosphoryl transfer steps using a ß-D-glucose 1,6-bisphosphate (ßG16BP) intermediate. Synthetic fluoromethylenephosphonate and methylenephosphonate analogs of ßG1P deliver novel step 1 transition state analog (TSA) complexes for ßPGM, incorporating trifluoromagnesate and tetrafluoroaluminate surrogates of the phosphoryl group. Within an invariant protein conformation, the ß-D-glucopyranose ring in the ßG1P TSA complexes (step 1) is flipped over and shifted relative to the G6P TSA complexes (step 2). Its equatorial hydroxyl groups are hydrogen-bonded directly to the enzyme rather than indirectly via water molecules as in step 2. The (C)O-P bond orientation for binding the phosphate in the inert phosphate site differs by ∼ 30° between steps 1 and 2. By contrast, the orientations for the axial O-Mg-O alignment for the TSA of the phosphoryl group in the catalytic site differ by only ∼ 5°, and the atoms representing the five phosphorus-bonded oxygens in the two transition states (TSs) are virtually superimposable. The conformation of ßG16BP in step 1 does not fit into the same invariant active site for step 2 by simple positional interchange of the phosphates: the TS alignment is achieved by conformational change of the hexose rather than the protein.


Assuntos
Hexoses/química , Hexoses/metabolismo , Organofosfonatos/química , Organofosfonatos/metabolismo , Fosfoglucomutase/química , Fosfoglucomutase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Catálise , Cristalografia por Raios X , Flúor/química , Glucose-6-Fosfato/química , Glucose-6-Fosfato/metabolismo , Glucofosfatos/química , Glucofosfatos/metabolismo , Isomerismo , Cinética , Lactococcus lactis/enzimologia , Magnésio/química , Modelos Moleculares , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Termodinâmica
7.
Angew Chem Int Ed Engl ; 56(33): 9732-9735, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28498638

RESUMO

We report X-ray crystallographic and 19 F NMR studies of the G-protein RhoA complexed with MgF3- , GDP, and RhoGAP, which has the mutation Arg85'Ala. When combined with DFT calculations, these data permit the identification of changes in transition state (TS) properties. The X-ray data show how Tyr34 maintains solvent exclusion and the core H-bond network in the active site by relocating to replace the missing Arg85' sidechain. The 19 F NMR data show deshielding effects that indicate the main function of Arg85' is electronic polarization of the transferring phosphoryl group, primarily mediated by H-bonding to O3G and thence to PG . DFT calculations identify electron-density redistribution and pinpoint why the TS for guanosine 5'-triphosphate (GTP) hydrolysis is higher in energy when RhoA is complexed with RhoGAPArg85'Ala relative to wild-type (WT) RhoGAP. This study demonstrates that 19 F NMR measurements, in combination with X-ray crystallography and DFT calculations, can reliably dissect the response of small GTPases to site-specific modifications.


Assuntos
Teoria da Densidade Funcional , GTP Fosfo-Hidrolases/genética , Cristalografia por Raios X , Flúor/química , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação
8.
Proc Natl Acad Sci U S A ; 110(51): 20765-70, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24319092

RESUMO

The human pathogen Pseudomonas aeruginosa coordinates the expression of virulence factors by using quorum sensing (QS), a signaling cascade triggered by the QS signal molecule and its receptor, a member of the LuxR family of QS transcriptional factors (LasR). The QS threshold and response in P. aeruginosa is defined by a QS LasR-specific antiactivator (QslA), which binds to LasR and prevents it from binding to its target promoter. However, how QslA binds to LasR and regulates its DNA binding activity in QS remains elusive. Here we report the crystal structure of QslA in complex with the N-terminal ligand binding domain of LasR. QsIA exists as a functional dimer to interact with the LasR ligand binding domain. Further analysis shows that QsIA binding occupies the LasR dimerization interface and consequently disrupts LasR dimerization, thereby preventing LasR from binding to its target DNA and disturbing normal QS. Our findings provide a structural model for understanding the QslA-mediated antiactivation mechanism in QS through protein-protein interaction.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Modelos Moleculares , Multimerização Proteica , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum/fisiologia , Transativadores/química , Transativadores/metabolismo , Proteínas de Bactérias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/genética , Transativadores/genética
9.
Biochim Biophys Acta ; 1838(7): 1978-84, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24589688

RESUMO

We have analyzed the cell wall of the radio-resistant bacterium Deinococcus radiodurans. Unexpectedly, the bacterial envelope appears to be organized in different complexes of high molecular weight. Each complex is composed of several proteins, most of which are coded by genes of unknown function and the majority are constituents of the inner/outer membrane system. One of the most abundant complexes is constituted by the gene DR_0774. This protein is a type of secretin which is a known subunit of the homo-oligomeric channel that represents the main bulk of the type IV piliation family. Finally, a minor component of the pink envelope consists of several inner-membrane proteins. The implications of these findings are discussed.


Assuntos
Proteínas de Bactérias/metabolismo , Deinococcus/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/genética , Parede Celular/genética , Parede Celular/metabolismo , Deinococcus/genética , Proteínas de Membrana/genética , Secretina/genética , Secretina/metabolismo
10.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 8): 1757-67, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26249356

RESUMO

Considerable effort is dedicated to evaluating macromolecular crystals at synchrotron sources, even for well established and robust systems. Much of this work is repetitive, and the time spent could be better invested in the interpretation of the results. In order to decrease the need for manual intervention in the most repetitive steps of structural biology projects, initial screening and data collection, a fully automatic system has been developed to mount, locate, centre to the optimal diffraction volume, characterize and, if possible, collect data from multiple cryocooled crystals. Using the capabilities of pixel-array detectors, the system is as fast as a human operator, taking an average of 6 min per sample depending on the sample size and the level of characterization required. Using a fast X-ray-based routine, samples are located and centred systematically at the position of highest diffraction signal and important parameters for sample characterization, such as flux, beam size and crystal volume, are automatically taken into account, ensuring the calculation of optimal data-collection strategies. The system is now in operation at the new ESRF beamline MASSIF-1 and has been used by both industrial and academic users for many different sample types, including crystals of less than 20 µm in the smallest dimension. To date, over 8000 samples have been evaluated on MASSIF-1 without any human intervention.


Assuntos
Cristalografia por Raios X/métodos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Cristalografia por Raios X/economia , Processamento de Imagem Assistida por Computador/economia , Substâncias Macromoleculares/química
11.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 1): 76-85, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25615862

RESUMO

Logging experiments with the laboratory-information management system ISPyB (Information System for Protein crystallography Beamlines) enhances the automation of small-angle X-ray scattering of biological macromolecules in solution (BioSAXS) experiments. The ISPyB interface provides immediate user-oriented online feedback and enables data cross-checking and downstream analysis. To optimize data quality and completeness, ISPyBB (ISPyB for BioSAXS) makes it simple for users to compare the results from new measurements with previous acquisitions from the same day or earlier experiments in order to maximize the ability to collect all data required in a single synchrotron visit. The graphical user interface (GUI) of ISPyBB has been designed to guide users in the preparation of an experiment. The input of sample information and the ability to outline the experimental aims in advance provides feedback on the number of measurements required, calculation of expected sample volumes and time needed to collect the data: all of this information aids the users to better prepare for their trip to the synchrotron. A prototype version of the ISPyBB database is now available at the European Synchrotron Radiation Facility (ESRF) beamline BM29 and is already greatly appreciated by academic users and industrial clients. It will soon be available at the PETRA III beamline P12 and the Diamond Light Source beamlines I22 and B21.


Assuntos
Espalhamento a Baixo Ângulo , Interface Usuário-Computador , Automação , Gráficos por Computador , Modelos Teóricos , Síncrotrons
12.
J Synchrotron Radiat ; 22(6): 1540-7, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26524320

RESUMO

MASSIF-1 (ID30A-1) is an ESRF undulator beamline operating at a fixed wavelength of 0.969 Å (12.8 keV) that is dedicated to the completely automatic characterization of and data collection from crystals of biological macromolecules. The first of the ESRF Upgrade MASSIF beamlines to be commissioned, it has been open since September 2014, providing a unique automated data collection service to academic and industrial users. Here, the beamline characteristics and details of the new service are outlined.


Assuntos
Cristalização/instrumentação , Cristalografia por Raios X/instrumentação , Armazenamento e Recuperação da Informação/métodos , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Síncrotrons/instrumentação , Algoritmos , Biopolímeros/química , Desenho de Equipamento , Análise de Falha de Equipamento , Robótica/instrumentação
13.
Proc Natl Acad Sci U S A ; 109(18): 6910-5, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22505741

RESUMO

Experimental observations of fluoromagnesate and fluoroaluminate complexes of ß-phosphoglucomutase (ß-PGM) have demonstrated the importance of charge balance in transition-state stabilization for phosphoryl transfer enzymes. Here, direct observations of ground-state analog complexes of ß-PGM involving trifluoroberyllate establish that when the geometry and charge distribution closely match those of the substrate, the distribution of conformers in solution and in the crystal predominantly places the reacting centers in van der Waals proximity. Importantly, two variants are found, both of which satisfy the criteria for near attack conformers. In one variant, the aspartate general base for the reaction is remote from the nucleophile. The nucleophile remains protonated and forms a nonproductive hydrogen bond to the phosphate surrogate. In the other variant, the general base forms a hydrogen bond to the nucleophile that is now correctly orientated for the chemical transfer step. By contrast, in the absence of substrate, the solvent surrounding the phosphate surrogate is arranged to disfavor nucleophilic attack by water. Taken together, the trifluoroberyllate complexes of ß-PGM provide a picture of how the enzyme is able to organize itself for the chemical step in catalysis through the population of intermediates that respond to increasing proximity of the nucleophile. These experimental observations show how the enzyme is capable of stabilizing the reaction pathway toward the transition state and also of minimizing unproductive catalysis of aspartyl phosphate hydrolysis.


Assuntos
Fosfotransferases (Fosfomutases)/química , Fosfotransferases (Fosfomutases)/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Berílio/química , Cristalografia por Raios X , Fluoretos/química , Lactococcus lactis/enzimologia , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Eletricidade Estática , Termodinâmica
14.
Nucleic Acids Res ; 40(21): 11009-22, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22965130

RESUMO

Mutations in immunoglobulin µ-binding protein 2 (Ighmbp2) cause distal spinal muscular atrophy type 1 (DSMA1), an autosomal recessive disease that is clinically characterized by distal limb weakness and respiratory distress. However, despite extensive studies, the mechanism of disease-causing mutations remains elusive. Here we report the crystal structures of the Ighmbp2 helicase core with and without bound RNA. The structures show that the overall fold of Ighmbp2 is very similar to that of Upf1, a key helicase involved in nonsense-mediated mRNA decay. Similar to Upf1, domains 1B and 1C of Ighmbp2 undergo large conformational changes in response to RNA binding, rotating 30° and 10°, respectively. The RNA binding and ATPase activities of Ighmbp2 are further enhanced by the R3H domain, located just downstream of the helicase core. Mapping of the pathogenic mutations of DSMA1 onto the helicase core structure provides a molecular basis for understanding the disease-causing consequences of Ighmbp2 mutations.


Assuntos
Proteínas de Ligação a DNA/química , Atrofia Muscular Espinal/genética , Mutação de Sentido Incorreto , RNA Helicases/química , Síndrome do Desconforto Respiratório do Recém-Nascido/genética , Fatores de Transcrição/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , RNA/química , RNA Helicases/genética , Transativadores/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Acta Crystallogr D Struct Biol ; 80(Pt 6): 451-463, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38841886

RESUMO

Fragment-based drug design using X-ray crystallography is a powerful technique to enable the development of new lead compounds, or probe molecules, against biological targets. This study addresses the need to determine fragment binding orientations for low-occupancy fragments with incomplete electron density, an essential step before further development of the molecule. Halogen atoms play multiple roles in drug discovery due to their unique combination of electronegativity, steric effects and hydrophobic properties. Fragments incorporating halogen atoms serve as promising starting points in hit-to-lead development as they often establish halogen bonds with target proteins, potentially enhancing binding affinity and selectivity, as well as counteracting drug resistance. Here, the aim was to unambiguously identify the binding orientations of fragment hits for SARS-CoV-2 nonstructural protein 1 (nsp1) which contain a combination of sulfur and/or chlorine, bromine and iodine substituents. The binding orientations of carefully selected nsp1 analogue hits were focused on by employing their anomalous scattering combined with Pan-Dataset Density Analysis (PanDDA). Anomalous difference Fourier maps derived from the diffraction data collected at both standard and long-wavelength X-rays were compared. The discrepancies observed in the maps of iodine-containing fragments collected at different energies were attributed to site-specific radiation-damage stemming from the strong X-ray absorption of I atoms, which is likely to cause cleavage of the C-I bond. A reliable and effective data-collection strategy to unambiguously determine the binding orientations of low-occupancy fragments containing sulfur and/or halogen atoms while mitigating radiation damage is presented.


Assuntos
Halogênios , SARS-CoV-2 , Enxofre , Halogênios/química , Cristalografia por Raios X/métodos , Enxofre/química , SARS-CoV-2/química , Proteínas não Estruturais Virais/química , Humanos , Elétrons , Modelos Moleculares , Desenho de Fármacos , Ligação Proteica , Sítios de Ligação , COVID-19
16.
Proc Natl Acad Sci U S A ; 107(10): 4555-60, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20164409

RESUMO

Prior evidence supporting the direct observation of phosphorane intermediates in enzymatic phosphoryl transfer reactions was based on the interpretation of electron density corresponding to trigonal species bridging the donor and acceptor atoms. Close examination of the crystalline state of beta-phosphoglucomutase, the archetypal phosphorane intermediate-containing enzyme, reveals that the trigonal species is not PO-3 , but is MgF-3 (trifluoromagnesate). Although MgF-3 complexes are transition state analogues rather than phosphoryl group transfer reaction intermediates, the presence of fluorine nuclei in near-transition state conformations offers new opportunities to explore the nature of the interactions, in particular the independent measures of local electrostatic and hydrogen-bonding distributions using 19F NMR. Measurements on three beta-PGM-MgF-3 -sugar phosphate complexes show a remarkable relationship between NMR chemical shifts, primary isotope shifts, NOEs, cross hydrogen bond F...H-N scalar couplings, and the atomic positions determined from the high-resolution crystal structure of the beta-PGM-MgF--3 -G6P complex. The measurements provide independent validation of the structural and isoelectronic MgF--3 model of near-transition state conformations.


Assuntos
Fluoretos/química , Compostos de Magnésio/química , Fosfoglucomutase/química , Fosforanos/química , Domínio Catalítico , Cristalografia por Raios X , Fluoretos/metabolismo , Glucofosfatos/química , Glucofosfatos/metabolismo , Ligação de Hidrogênio , Compostos de Magnésio/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Fosfatos/química , Fosfatos/metabolismo , Fosfoglucomutase/metabolismo , Fosforanos/metabolismo , Ligação Proteica , Conformação Proteica
17.
Science ; 381(6663): 1217-1225, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708276

RESUMO

The mitogen-activated protein kinase (MAPK) p38α is a central component of signaling in inflammation and the immune response and is, therefore, an important drug target. Little is known about the molecular mechanism of its activation by double phosphorylation from MAPK kinases (MAP2Ks), because of the challenge of trapping a transient and dynamic heterokinase complex. We applied a multidisciplinary approach to generate a structural model of p38α in complex with its MAP2K, MKK6, and to understand the activation mechanism. Integrating cryo-electron microscopy with molecular dynamics simulations, hydrogen-deuterium exchange mass spectrometry, and experiments in cells, we demonstrate a dynamic, multistep phosphorylation mechanism, identify catalytically relevant interactions, and show that MAP2K-disordered amino termini determine pathway specificity. Our work captures a fundamental step of cell signaling: a kinase phosphorylating its downstream target kinase.


Assuntos
MAP Quinase Quinase 2 , MAP Quinase Quinase 6 , Proteína Quinase 14 Ativada por Mitógeno , Microscopia Crioeletrônica , Ativação Enzimática , MAP Quinase Quinase 2/química , MAP Quinase Quinase 6/química , Proteína Quinase 14 Ativada por Mitógeno/química , Fosforilação , Especificidade por Substrato , Conformação Proteica
18.
Acta Crystallogr D Struct Biol ; 79(Pt 5): 374-386, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37039669

RESUMO

The polymorphism of human insulin upon pH variation was characterized via X-ray powder diffraction, employing a crystallization protocol previously established for co-crystallization with phenolic derivatives. Two distinct rhombohedral (R3) polymorphs and one cubic (I213) polymorph were identified with increasing pH, corresponding to the T6, T3R3f and T2 conformations of insulin, respectively. The structure of the cubic T2 polymorph was determined via multi-profile stereochemically restrained Rietveld refinement at 2.7 Šresolution. This constitutes the first cubic insulin structure to be determined from crystals grown in the presence of zinc ions, although no zinc binding was observed. The differences of the polycrystalline variant from other cubic insulin structures, as well as the nature of the pH-driven phase transitions, are discussed in detail.


Assuntos
Insulina Regular Humana , Insulina , Humanos , Insulina/química , Difração de Raios X , Fenóis , Cristalização
19.
Nat Commun ; 14(1): 8248, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086790

RESUMO

The Mitochondrial Complex I Assembly (MCIA) complex is essential for the biogenesis of respiratory Complex I (CI), the first enzyme in the respiratory chain, which has been linked to Alzheimer's disease (AD) pathogenesis. However, how MCIA facilitates CI assembly, and how it is linked with AD pathogenesis, is poorly understood. Here we report the structural basis of the complex formation between the MCIA subunits ECSIT and ACAD9. ECSIT binding induces a major conformational change in the FAD-binding loop of ACAD9, releasing the FAD cofactor and converting ACAD9 from a fatty acid ß-oxidation (FAO) enzyme to a CI assembly factor. We provide evidence that ECSIT phosphorylation downregulates its association with ACAD9 and is reduced in neuronal cells upon exposure to amyloid-ß (Aß) oligomers. These findings advance our understanding of the MCIA complex assembly and suggest a possible role for ECSIT in the reprogramming of bioenergetic pathways linked to Aß toxicity, a hallmark of AD.


Assuntos
Doença de Alzheimer , Complexo I de Transporte de Elétrons , Humanos , Oxirredução , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo
20.
J Biol Chem ; 286(16): 14040-8, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21349853

RESUMO

Phosphoglycerate kinase (PGK) is the enzyme responsible for the first ATP-generating step of glycolysis and has been implicated extensively in oncogenesis and its development. Solution small angle x-ray scattering (SAXS) data, in combination with crystal structures of the enzyme in complex with substrate and product analogues, reveal a new conformation for the resting state of the enzyme and demonstrate the role of substrate binding in the preparation of the enzyme for domain closure. Comparison of the x-ray scattering curves of the enzyme in different states with crystal structures has allowed the complete reaction cycle to be resolved both structurally and temporally. The enzyme appears to spend most of its time in a fully open conformation with short periods of closure and catalysis, thereby allowing the rapid diffusion of substrates and products in and out of the binding sites. Analysis of the open apoenzyme structure, defined through deformable elastic network refinement against the SAXS data, suggests that interactions in a mostly buried hydrophobic region may favor the open conformation. This patch is exposed on domain closure, making the open conformation more thermodynamically stable. Ionic interactions act to maintain the closed conformation to allow catalysis. The short time PGK spends in the closed conformation and its strong tendency to rest in an open conformation imply a spring-loaded release mechanism to regulate domain movement, catalysis, and efficient product release.


Assuntos
Fosfoglicerato Quinase/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Biofísica/métodos , Catálise , Cristalografia por Raios X/métodos , Humanos , Camundongos , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espalhamento de Radiação , Homologia de Sequência de Aminoácidos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA