RESUMO
Innate lymphoid cells (ILCs) are critical mediators of mucosal immunity, and group 1 ILCs (ILC1 cells) and group 3 ILCs (ILC3 cells) have been shown to be functionally plastic. Here we found that group 2 ILCs (ILC2 cells) also exhibited phenotypic plasticity in response to infectious or noxious agents, characterized by substantially lower expression of the transcription factor GATA-3 and a concomitant switch to being ILC1 cells that produced interferon-γ (IFN-γ). Interleukin 12 (IL-12) and IL-18 regulated this conversion, and during viral infection, ILC2 cells clustered within inflamed areas and acquired an ILC1-like phenotype. Mechanistically, these ILC1 cells augmented virus-induced inflammation in a manner dependent on the transcription factor T-bet. Notably, IL-12 converted human ILC2 cells into ILC1 cells, and the frequency of ILC1 cells in patients with chronic obstructive pulmonary disease (COPD) correlated with disease severity and susceptibility to exacerbations. Thus, functional plasticity of ILC2 cells exacerbates anti-viral immunity, which may have adverse consequences in respiratory diseases such as COPD.
Assuntos
Infecções por Haemophilus/imunologia , Haemophilus influenzae/imunologia , Vírus da Influenza A/imunologia , Pulmão/imunologia , Linfócitos/imunologia , Infecções por Orthomyxoviridae/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Células Th1/imunologia , Células Th2/imunologia , Idoso , Animais , Diferenciação Celular , Plasticidade Celular/imunologia , Células Cultivadas , Citocinas/metabolismo , Feminino , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Fenótipo , Fumar/efeitos adversos , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismoRESUMO
Inflammation biomarkers can provide valuable insight into the role of inflammatory processes in many diseases and conditions. Sequencing based analyses of such biomarkers can also serve as an exemplar of the genetic architecture of quantitative traits. To evaluate the biological insight, which can be provided by a multi-ancestry, whole-genome based association study, we performed a comprehensive analysis of 21 inflammation biomarkers from up to 38 465 individuals with whole-genome sequencing from the Trans-Omics for Precision Medicine (TOPMed) program (with varying sample size by trait, where the minimum sample size was n = 737 for MMP-1). We identified 22 distinct single-variant associations across 6 traits-E-selectin, intercellular adhesion molecule 1, interleukin-6, lipoprotein-associated phospholipase A2 activity and mass, and P-selectin-that remained significant after conditioning on previously identified associations for these inflammatory biomarkers. We further expanded upon known biomarker associations by pairing the single-variant analysis with a rare variant set-based analysis that further identified 19 significant rare variant set-based associations with 5 traits. These signals were distinct from both significant single variant association signals within TOPMed and genetic signals observed in prior studies, demonstrating the complementary value of performing both single and rare variant analyses when analyzing quantitative traits. We also confirm several previously reported signals from semi-quantitative proteomics platforms. Many of these signals demonstrate the extensive allelic heterogeneity and ancestry-differentiated variant-trait associations common for inflammation biomarkers, a characteristic we hypothesize will be increasingly observed with well-powered, large-scale analyses of complex traits.
Assuntos
Biomarcadores , Estudo de Associação Genômica Ampla , Inflamação , Medicina de Precisão , Sequenciamento Completo do Genoma , Humanos , Medicina de Precisão/métodos , Inflamação/genética , Estudo de Associação Genômica Ampla/métodos , Sequenciamento Completo do Genoma/métodos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Predisposição Genética para Doença , Feminino , Interleucina-6/genéticaRESUMO
Genetic studies have identified numerous regions associated with plasma fibrinogen levels in Europeans, yet missing heritability and limited inclusion of non-Europeans necessitates further studies with improved power and sensitivity. Compared with array-based genotyping, whole genome sequencing (WGS) data provides better coverage of the genome and better representation of non-European variants. To better understand the genetic landscape regulating plasma fibrinogen levels, we meta-analyzed WGS data from the NHLBI's Trans-Omics for Precision Medicine (TOPMed) program (n=32,572), with array-based genotype data from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium (n=131,340) imputed to the TOPMed or Haplotype Reference Consortium panel. We identified 18 loci that have not been identified in prior genetic studies of fibrinogen. Of these, four are driven by common variants of small effect with reported MAF at least 10 percentage points higher in African populations. Three signals (SERPINA1, ZFP36L2, and TLR10) contain predicted deleterious missense variants. Two loci, SOCS3 and HPN, each harbor two conditionally distinct, non-coding variants. The gene region encoding the fibrinogen protein chain subunits (FGG;FGB;FGA), contains 7 distinct signals, including one novel signal driven by rs28577061, a variant common in African ancestry populations but extremely rare in Europeans (MAFAFR=0.180; MAFEUR=0.008). Through phenome-wide association studies in the VA Million Veteran Program, we found associations between fibrinogen polygenic risk scores and thrombotic and inflammatory disease phenotypes, including an association with gout. Our findings demonstrate the utility of WGS to augment genetic discovery in diverse populations and offer new insights for putative mechanisms of fibrinogen regulation.
RESUMO
As terabytes of multi-omics data are being generated, there is an ever-increasing need for methods facilitating the integration and interpretation of such data. Current multi-omics integration methods typically output lists, clusters, or subnetworks of molecules related to an outcome. Even with expert domain knowledge, discerning the biological processes involved is a time-consuming activity. Here we propose PathIntegrate, a method for integrating multi-omics datasets based on pathways, designed to exploit knowledge of biological systems and thus provide interpretable models for such studies. PathIntegrate employs single-sample pathway analysis to transform multi-omics datasets from the molecular to the pathway-level, and applies a predictive single-view or multi-view model to integrate the data. Model outputs include multi-omics pathways ranked by their contribution to the outcome prediction, the contribution of each omics layer, and the importance of each molecule in a pathway. Using semi-synthetic data we demonstrate the benefit of grouping molecules into pathways to detect signals in low signal-to-noise scenarios, as well as the ability of PathIntegrate to precisely identify important pathways at low effect sizes. Finally, using COPD and COVID-19 data we showcase how PathIntegrate enables convenient integration and interpretation of complex high-dimensional multi-omics datasets. PathIntegrate is available as an open-source Python package.
Assuntos
Genômica , Multiômica , Genômica/métodosRESUMO
Rationale: Emphysema is a chronic obstructive pulmonary disease phenotype with important prognostic implications. Identifying blood-based biomarkers of emphysema will facilitate early diagnosis and development of targeted therapies. Objectives: To discover blood omics biomarkers for chest computed tomography-quantified emphysema and develop predictive biomarker panels. Methods: Emphysema blood biomarker discovery was performed using differential gene expression, alternative splicing, and protein association analyses in a training sample of 2,370 COPDGene participants with available blood RNA sequencing, plasma proteomics, and clinical data. Internal validation was conducted in a COPDGene testing sample (n = 1,016), and external validation was done in the ECLIPSE study (n = 526). Because low body mass index (BMI) and emphysema often co-occur, we performed a mediation analysis to quantify the effect of BMI on gene and protein associations with emphysema. Elastic net models with bootstrapping were also developed in the training sample sequentially using clinical, blood cell proportions, RNA-sequencing, and proteomic biomarkers to predict quantitative emphysema. Model accuracy was assessed by the area under the receiver operating characteristic curves for subjects stratified into tertiles of emphysema severity. Measurements and Main Results: Totals of 3,829 genes, 942 isoforms, 260 exons, and 714 proteins were significantly associated with emphysema (false discovery rate, 5%) and yielded 11 biological pathways. Seventy-four percent of these genes and 62% of these proteins showed mediation by BMI. Our prediction models demonstrated reasonable predictive performance in both COPDGene and ECLIPSE. The highest-performing model used clinical, blood cell, and protein data (area under the receiver operating characteristic curve in COPDGene testing, 0.90; 95% confidence interval, 0.85-0.90). Conclusions: Blood transcriptome and proteome-wide analyses revealed key biological pathways of emphysema and enhanced the prediction of emphysema.
Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Transcriptoma , Proteômica , Enfisema Pulmonar/genética , Enfisema Pulmonar/complicações , Biomarcadores , Perfilação da Expressão GênicaRESUMO
Rationale: Accelerated biological aging has been implicated in the development of interstitial lung disease (ILD) and other diseases of aging but remains poorly understood. Objectives: To identify plasma proteins that mediate the relationship between chronological age and survival association in patients with ILD. Methods: Causal mediation analysis was performed to identify plasma proteins that mediated the chronological age-survival relationship in an idiopathic pulmonary fibrosis discovery cohort. Proteins mediating this relationship after adjustment for false discovery were advanced for testing in an independent ILD validation cohort and explored in a chronic obstructive pulmonary disease cohort. A proteomic-based measure of biological age was constructed and survival analysis performed, assessing the impact of biological age and peripheral blood telomere length on the chronological age-survival relationship. Measurements and Main Results: Twenty-two proteins mediated the chronological age-survival relationship after adjustment for false discovery in the idiopathic pulmonary fibrosis discovery cohort (n = 874), with 19 remaining significant mediators of this relationship in the ILD validation cohort (n = 983) and one mediating this relationship in the chronic obstructive pulmonary disease cohort. Latent transforming growth factor-ß binding protein 2 and ectodysplasin A2 receptor showed the strongest mediation across cohorts. A proteomic measure of biological age completely attenuated the chronological age-survival association and better discriminated survival than chronological age. Results were robust to adjustment for peripheral blood telomere length, which did not mediate the chronological age-survival relationship. Conclusions: Molecular measures of aging completely mediate the relationship between chronological age and survival, suggesting that chronological age has no direct effect on ILD survival.
Assuntos
Envelhecimento , Fibrose Pulmonar Idiopática , Humanos , Masculino , Feminino , Idoso , Envelhecimento/fisiologia , Pessoa de Meia-Idade , Fibrose Pulmonar Idiopática/mortalidade , Fibrose Pulmonar Idiopática/fisiopatologia , Fibrose Pulmonar Idiopática/sangue , Análise de Mediação , Estudos de Coortes , Análise de Sobrevida , Proteômica , Idoso de 80 Anos ou mais , Proteínas Sanguíneas/metabolismoRESUMO
Rationale: Quantitative interstitial abnormalities (QIAs) are early measures of lung injury automatically detected on chest computed tomography scans. QIAs are associated with impaired respiratory health and share features with advanced lung diseases, but their biological underpinnings are not well understood. Objectives: To identify novel protein biomarkers of QIAs using high-throughput plasma proteomic panels within two multicenter cohorts. Methods: We measured the plasma proteomics of 4,383 participants in an older, ever-smoker cohort (COPDGene [Genetic Epidemiology of Chronic Obstructive Pulmonary Disease]) and 2,925 participants in a younger population cohort (CARDIA [Coronary Artery Disease Risk in Young Adults]) using the SomaLogic SomaScan assays. We measured QIAs using a local density histogram method. We assessed the associations between proteomic biomarker concentrations and QIAs using multivariable linear regression models adjusted for age, sex, body mass index, smoking status, and study center (Benjamini-Hochberg false discovery rate-corrected P ⩽ 0.05). Measurements and Main Results: In total, 852 proteins were significantly associated with QIAs in COPDGene and 185 in CARDIA. Of the 144 proteins that overlapped between COPDGene and CARDIA, all but one shared directionalities and magnitudes. These proteins were enriched for 49 Gene Ontology pathways, including biological processes in inflammatory response, cell adhesion, immune response, ERK1/2 regulation, and signaling; cellular components in extracellular regions; and molecular functions including calcium ion and heparin binding. Conclusions: We identified the proteomic biomarkers of QIAs in an older, smoking population with a higher prevalence of pulmonary disease and in a younger, healthier community cohort. These proteomics features may be markers of early precursors of advanced lung diseases.
Assuntos
Biomarcadores , Proteômica , Doença Pulmonar Obstrutiva Crônica , Humanos , Feminino , Masculino , Biomarcadores/sangue , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/sangue , Adulto , Idoso , Estudos de Coortes , Tomografia Computadorizada por Raios X , Doenças Pulmonares Intersticiais/genética , Adulto JovemRESUMO
RATIONALE: Accelerated decline in lung function is associated with incident COPD, hospitalizations and death. However, identifying this trajectory with longitudinal spirometry measurements is challenging in clinical practice. OBJECTIVE: To determine whether a proteomic risk score trained on accelerated decline in lung function can assess risk of future respiratory disease and mortality. METHODS: In CARDIA, a population-based cohort starting in young adulthood, longitudinal measurements of FEV1 percent predicted (up to six timepoints over 30 years) were used to identify accelerated and normal decline trajectories. Protein aptamers associated with an accelerated decline trajectory were identified with multivariable logistic regression followed by LASSO regression. The proteomic respiratory susceptibility score was derived based on these circulating proteins and applied to the UK Biobank and COPDGene studies to examine associations with future respiratory morbidity and mortality. MEASUREMENTS AND RESULTS: Higher susceptibility score was independently associated with all-cause mortality (UKBB: HR 1.56, 95%CI 1.50-1.61; COPDGene: HR 1.75, 95%CI 1.63-1.88), respiratory mortality (UKBB: HR 2.39, 95% CI 2.16-2.64; COPDGene: HR 1.83, 95%CI 1.33-2.51), incident COPD (UKBB: HR 1.84, 95%CI 1.71-1.98), incident respiratory exacerbation (COPDGene: OR 1.11, 95%CI 1.03-1.20), and incident exacerbation requiring hospitalization (COPDGene: OR 1.18, 95%CI 1.08-1.28). CONCLUSIONS: A proteomic signature of increased respiratory susceptibility identifies people at risk of respiratory death, incident COPD, and respiratory exacerbations. This susceptibility score is comprised of proteins with well-known and novel associations with lung health and holds promise for the early detection of lung disease without requiring years of spirometry measurements.
RESUMO
RATIONALE: Individuals with COPD have airflow obstruction and maldistribution of ventilation. For those living at high altitude, any gas exchange abnormality is compounded by reduced partial pressures of inspired oxygen. OBJECTIVES: Does residence at higher-altitude exposure affect COPD outcomes, including lung function, imaging characteristics, symptoms, health status, functional exercise capacity, exacerbations, or mortality? METHODS: From the SPIROMICS cohort, we identified individuals with COPD living below 1,000 ft (305 m) elevation (n= 1,367) versus above 4,000 ft (1,219 m) elevation (n= 288). Multivariable regression models were used to evaluate associations of exposure to high altitude with COPD-related outcomes. MEASUREMENTS AND MAIN RESULTS: Living at higher altitude was associated with reduced functional exercise capacity as defined by 6MWD (-32.3 m, (-55.7 to -28.6)). There were no differences in patient-reported outcomes as defined by symptoms (CAT, mMRC), or health status (SGRQ). Higher altitude was not associated with a different rate of FEV1 decline. Higher altitude was associated with lower odds of severe exacerbations (IRR 0.65, (0.46 to 0.90)). There were no differences in small airway disease, air trapping, or emphysema. In longitudinal analyses, higher altitude was associated with increased mortality (HR 1.25, (1.0 to 1.55)); however, this association was no longer significant when accounting for air pollution. CONCLUSIONS: Chronic altitude exposure is associated with reduced functional exercise capacity in individuals with COPD, but this did not translate into differences in symptoms or health status. Additionally, chronic high-altitude exposure did not affect progression of disease as defined by longitudinal changes in spirometry.
RESUMO
RATIONALE: Serum Immunoglobulin G (IgG) deficiency is associated with morbidity in chronic obstructive pulmonary disease (COPD) but it is unclear whether concentrations in the lower end of the normal range still confer risk. OBJECTIVES: To determine if levels above traditional cutoffs for serum IgG deficiency are associated with exacerbations among current and former smokers with or at risk for COPD. MEASUREMENTS AND MAIN RESULTS: Former and current smokers in SPIROMICS (n=1,497) were studied, n=1,026 with and n=471 at risk for COPD. In a subset (n=1,031), IgG subclasses were measured. Associations between total IgG or subclasses and prospective exacerbations were evaluated with multivariable models adjusting for demographics, current smoking, smoking history, FEV1% predicted, inhaled corticosteroids, and serum IgA. RESULTS: The 35th percentile (1225 mg/dL in this cohort) of IgG was the best cutoff by Akaike Information Criterion (AIC). Below this, there was increased exacerbation risk (IRR 1.28, 95% CI 1.08-1.51). Among subclasses, IgG1 and IgG2 below 35th percentile (354 and 105 mg/dL, respectively) were both associated with increased risk of severe exacerbation (IgG1: IRR 1.39, 95% CI 1.06-1.84; IgG2: IRR 1.50, 95% CI 1.14-1.1.97). These associations remained significant when additionally adjusting for history of exacerbations. CONCLUSIONS: Lower serum IgG is prospectively associated with exacerbations in individuals with or at risk for COPD. Among subclasses, lower IgG1 and IgG2 are prospectively associated with severe exacerbations. The optimal IgG cutoff was substantially higher than traditional cutoffs for deficiency, suggesting subtle impairment of humoral immunity may be associated with exacerbations.
RESUMO
RATIONAL: Ground glass opacities (GGO) in the absence of interstitial lung disease are understudied. OBJECTIVE: To assess the association of GGO with white blood cells (WBCs) and progression of quantified chest CT emphysema. METHODS: We analyzed data of participants in the Subpopulations and Intermediate Outcome Measures In COPD Study (SPIROMICS). Chest radiologists and pulmonologists labeled regions of the lung as GGO and adaptive multiple feature method (AMFM) trained the computer to assign those labels to image voxels and quantify the volume of the lung with GGO (%GGOAMFM). We used multivariable linear regression, zero-inflated negative binomial, and proportional hazards regression models to assess the association of %GGOAMFM with WBC, changes in %emphysema, and clinical outcomes. MEASUREMENTS AND MAIN RESULTS: Among 2,714 participants, 1,680 had COPD and 1,034 had normal spirometry. Among COPD participants, based on the multivariable analysis, current smoking and chronic productive cough was associated with higher %GGOAMFM. Higher %GGOAMFM was cross-sectionally associated with higher WBCs and neutrophils levels. Higher %GGOAMFM per interquartile range at visit 1 (baseline) was associated with an increase in emphysema at one-year follow visit by 11.7% (Relative increase; 95%CI 7.5-16.1%;P<0.001). We found no association between %GGOAMFM and one-year FEV1 decline but %GGOAMFM was associated with exacerbations and all-cause mortality during a median follow-up time of 1,544 days (Interquartile Interval=1,118-2,059). Among normal spirometry participants, we found similar results except that %GGOAMFM was associated with progression to COPD at one-year follow-up. CONCLUSIONS: Our findings suggest that GGOAMFM is associated with increased systemic inflammation and emphysema progression.
RESUMO
Rationale: Quantitative interstitial abnormalities (QIAs) are a computed tomography (CT) measure of early parenchymal lung disease associated with worse clinical outcomes, including exercise capacity and symptoms. The presence of pulmonary vasculopathy in QIAs and its role in the QIA-outcome relationship is unknown. Objectives: To quantify radiographic pulmonary vasculopathy in QIAs and determine whether this vasculopathy mediates the QIA-outcome relationship. Methods: Ever-smokers with QIAs, outcomes, and pulmonary vascular mediator data were identified from the Genetic Epidemiology of COPD (COPDGene) study cohort. CT-based vascular mediators were right ventricle-to-left ventricle ratio, pulmonary artery-to-aorta ratio, and preacinar intraparenchymal arterial dilation (pulmonary artery volume, 5-20 mm2 in cross-sectional area, normalized to total arterial volume). Outcomes were 6-minute walk distance and a modified Medical Council Research Council Dyspnea Scale score of 2 or higher. Adjusted causal mediation analyses were used to determine whether the pulmonary vasculature mediated the QIA effect on outcomes. Associations of preacinar arterial dilation with select plasma biomarkers of pulmonary vascular dysfunction were examined. Measurements and Main Results: Among 8,200 participants, QIA burden correlated positively with vascular damage measures, including preacinar arterial dilation. Preacinar arterial dilation mediated 79.6% of the detrimental impact of QIA on 6-minute walk distance (56.2-100%; P < 0.001). Pulmonary artery-to-aorta ratio was a weak mediator, and right ventricle-to-left ventricle ratio was a suppressor. Similar results were observed in the relationship between QIA and modified Medical Council Research Council dyspnea score. Preacinar arterial dilation correlated with increased pulmonary vascular dysfunction biomarker levels, including angiopoietin-2 and N-terminal brain natriuretic peptide. Conclusions: Parenchymal QIAs deleteriously impact outcomes primarily through pulmonary vasculopathy. Preacinar arterial dilation may be a novel marker of pulmonary vasculopathy in QIAs.
Assuntos
Artéria Pulmonar , Doença Pulmonar Obstrutiva Crônica , Tomografia Computadorizada por Raios X , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/genética , Estudos de Coortes , Doenças Pulmonares Intersticiais/fisiopatologia , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Tolerância ao ExercícioRESUMO
Rationale: The airway microbiome has the potential to shape chronic obstructive pulmonary disease (COPD) pathogenesis, but its relationship to outcomes in milder disease is unestablished. Objectives: To identify sputum microbiome characteristics associated with markers of COPD in participants of the Subpopulations and Intermediate Outcome Measures of COPD Study (SPIROMICS). Methods: Sputum DNA from 877 participants was analyzed using 16S ribosomal RNA gene sequencing. Relationships between baseline airway microbiota composition and clinical, radiographic, and mucoinflammatory markers, including longitudinal lung function trajectory, were examined. Measurements and Main Results: Participant data represented predominantly milder disease (Global Initiative for Chronic Obstructive Lung Disease stage 0-2 obstruction in 732 of 877 participants). Phylogenetic diversity (i.e., range of different species within a sample) correlated positively with baseline lung function, decreased with higher Global Initiative for Chronic Obstructive Lung Disease stage, and correlated negatively with symptom burden, radiographic markers of airway disease, and total mucin concentrations (P < 0.001). In covariate-adjusted regression models, organisms robustly associated with better lung function included Alloprevotella, Oribacterium, and Veillonella species. Conversely, lower lung function, greater symptoms, and radiographic measures of small airway disease were associated with enrichment in members of Streptococcus, Actinobacillus, Actinomyces, and other genera. Baseline sputum microbiota features were also associated with lung function trajectory during SPIROMICS follow-up (stable/improved, decline, or rapid decline groups). The stable/improved group (slope of FEV1 regression ⩾66th percentile) had greater bacterial diversity at baseline associated with enrichment in Prevotella, Leptotrichia, and Neisseria species. In contrast, the rapid decline group (FEV1 slope ⩽33rd percentile) had significantly lower baseline diversity associated with enrichment in Streptococcus species. Conclusions: In SPIROMICS, baseline airway microbiota features demonstrate divergent associations with better or worse COPD-related outcomes.
Assuntos
Microbiota , Doença Pulmonar Obstrutiva Crônica , Escarro , Humanos , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Masculino , Feminino , Escarro/microbiologia , Pessoa de Meia-Idade , Idoso , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genética , BiomarcadoresRESUMO
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disease caused by an aberrant repair of injured alveolar epithelial cells. The maintenance of the alveolar epithelium and its regeneration after the damage is fueled by alveolar type II (ATII) cells. Injured cells release exosomes containing microRNAs (miRNAs), which can alter the recipient cells' function. Lung tissue, ATII cells, fibroblasts, plasma, and exosomes were obtained from naive patients with IPF, patients with IPF taking pirfenidone or nintedanib, and control organ donors. miRNA expression was analyzed to study their impact on exosome-mediated effects in IPF. High miR-143-5p and miR-342-5p levels were detected in ATII cells, lung tissue, plasma, and exosomes in naive patients with IPF. Decreased FASN (fatty acid synthase) and ACSL-4 (acyl-CoA-synthetase long-chain family member 4) expression was found in ATII cells. miR-143-5p and miR-342-5p overexpression or ATII cell treatment with IPF-derived exosomes containing these miRNAs lowered FASN and ACSL-4 levels. Also, this contributed to ATII cell injury and senescence. However, exosomes isolated from patients with IPF taking nintedanib or pirfenidone increased FASN expression in ATII cells compared with naive patients with IPF. Furthermore, fibroblast treatment with exosomes obtained from naive patients with IPF increased SMAD3, CTGF, COL3A1, and TGFß1 expression. Our results suggest that IPF-derived exosomes containing miR-143-5p and miR-342-5p inhibited the de novo fatty acid synthesis pathway in ATII cells. They also induced the profibrotic response in fibroblasts. Pirfenidone and nintedanib improved ATII cell function and inhibited fibrogenesis. This study highlights the importance of exosomes in IPF pathophysiology.
Assuntos
Exossomos , Fibrose Pulmonar Idiopática , MicroRNAs , Humanos , Células Epiteliais Alveolares/metabolismo , Exossomos/metabolismo , Ácido Graxo Sintases/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismoRESUMO
BACKGROUND: Studies have identified individual blood biomarkers associated with chronic obstructive pulmonary disease (COPD) and related phenotypes. However, complex diseases such as COPD typically involve changes in multiple molecules with interconnections that may not be captured when considering single molecular features. METHODS: Leveraging proteomic data from 3,173 COPDGene Non-Hispanic White (NHW) and African American (AA) participants, we applied sparse multiple canonical correlation network analysis (SmCCNet) to 4,776 proteins assayed on the SomaScan v4.0 platform to derive sparse networks of proteins associated with current vs. former smoking status, airflow obstruction, and emphysema quantitated from high-resolution computed tomography scans. We then used NetSHy, a dimension reduction technique leveraging network topology, to produce summary scores of each proteomic network, referred to as NetSHy scores. We next performed a genome-wide association study (GWAS) to identify variants associated with the NetSHy scores, or network quantitative trait loci (nQTLs). Finally, we evaluated the replicability of the networks in an independent cohort, SPIROMICS. RESULTS: We identified networks of 13 to 104 proteins for each phenotype and exposure in NHW and AA, and the derived NetSHy scores significantly associated with the variable of interests. Networks included known (sRAGE, ALPP, MIP1) and novel molecules (CA10, CPB1, HIS3, PXDN) and interactions involved in COPD pathogenesis. We observed 7 nQTL loci associated with NetSHy scores, 4 of which remained after conditional analysis. Networks for smoking status and emphysema, but not airflow obstruction, demonstrated a high degree of replicability across race groups and cohorts. CONCLUSIONS: In this work, we apply state-of-the-art molecular network generation and summarization approaches to proteomic data from COPDGene participants to uncover protein networks associated with COPD phenotypes. We further identify genetic associations with networks. This work discovers protein networks containing known and novel proteins and protein interactions associated with clinically relevant COPD phenotypes across race groups and cohorts.
Assuntos
Estudo de Associação Genômica Ampla , Proteômica , Doença Pulmonar Obstrutiva Crônica , Fumar , Humanos , Doença Pulmonar Obstrutiva Crônica/genética , Fumar/genética , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Locos de Características Quantitativas , Fenótipo , Polimorfismo de Nucleotídeo Único , Variação GenéticaRESUMO
MOTIVATION: Biological networks can provide a system-level understanding of underlying processes. In many contexts, networks have a high degree of modularity, i.e. they consist of subsets of nodes, often known as subnetworks or modules, which are highly interconnected and may perform separate functions. In order to perform subsequent analyses to investigate the association between the identified module and a variable of interest, a module summarization, that best explains the module's information and reduces dimensionality is often needed. Conventional approaches for obtaining network representation typically rely only on the profiles of the nodes within the network while disregarding the inherent network topological information. RESULTS: In this article, we propose NetSHy, a hybrid approach which is capable of reducing the dimension of a network while incorporating topological properties to aid the interpretation of the downstream analyses. In particular, NetSHy applies principal component analysis (PCA) on a combination of the node profiles and the well-known Laplacian matrix derived directly from the network similarity matrix to extract a summarization at a subject level. Simulation scenarios based on random and empirical networks at varying network sizes and sparsity levels show that NetSHy outperforms the conventional PCA approach applied directly on node profiles, in terms of recovering the true correlation with a phenotype of interest and maintaining a higher amount of explained variation in the data when networks are relatively sparse. The robustness of NetSHy is also demonstrated by a more consistent correlation with the observed phenotype as the sample size decreases. Lastly, a genome-wide association study is performed as an application of a downstream analysis, where NetSHy summarization scores on the biological networks identify more significant single nucleotide polymorphisms than the conventional network representation. AVAILABILITY AND IMPLEMENTATION: R code implementation of NetSHy is available at https://github.com/thaovu1/NetSHy. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Simulação por Computador , Análise de Componente Principal , Tamanho da AmostraRESUMO
Rationale: Acute exacerbations of chronic obstructive pulmonary disease (AE-COPDs) are associated with a significant disease burden. Blood immune phenotyping may improve our understanding of a COPD endotype at increased risk of exacerbations. Objective: To determine the relationship between the transcriptome of circulating leukocytes and COPD exacerbations. Methods: Blood RNA sequencing data (n = 3,618) from the COPDGene (Genetic Epidemiology of COPD) study were analyzed. Blood microarray data (n = 646) from the ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) study were used for validation. We tested the association between blood gene expression and AE-COPDs. We imputed the abundance of leukocyte subtypes and tested their association with prospective AE-COPDs. Flow cytometry was performed on blood in SPIROMICS (Subpopulations and Intermediate Outcomes in COPD Study) (n = 127), and activation markers for T cells were tested for association with prospective AE-COPDs. Measurements and Main Results: Exacerbations were reported 4,030 and 2,368 times during follow-up in COPDGene (5.3 ± 1.7 yr) and ECLIPSE (3 yr), respectively. We identified 890, 675, and 3,217 genes associated with a history of AE-COPDs, persistent exacerbations (at least one exacerbation per year), and prospective exacerbation rate, respectively. In COPDGene, the number of prospective exacerbations in patients with COPD (Global Initiative for Chronic Obstructive Lung Disease stage ⩾2) was negatively associated with circulating CD8+ T cells, CD4+ T cells, and resting natural killer cells. The negative association with naive CD4+ T cells was replicated in ECLIPSE. In the flow-cytometry study, an increase in CTLA4 on CD4+ T cells was positively associated with AE-COPDs. Conclusions: Individuals with COPD with lower circulating lymphocyte counts, particularly decreased CD4+ T cells, are more susceptible to AE-COPDs, including persistent exacerbations.
Assuntos
Linfócitos T CD8-Positivos , Doença Pulmonar Obstrutiva Crônica , Humanos , Estudos Prospectivos , Progressão da Doença , Doença Pulmonar Obstrutiva Crônica/complicações , TranscriptomaRESUMO
Rationale: Cigarette smoking contributes to the risk of death through different mechanisms. Objectives: To determine how causes of and clinical features associated with death vary in tobacco cigarette users by lung function impairment. Methods: We stratified current and former tobacco cigarette users enrolled in Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) into normal spirometry, PRISm (Preserved Ratio Impaired Spirometry), Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1-2 COPD, and GOLD 3-4 COPD. Deaths were identified via longitudinal follow-up and Social Security Death Index search. Causes of death were adjudicated after a review of death certificates, medical records, and next-of-kin interviews. We tested associations between baseline clinical variables and all-cause mortality using multivariable Cox proportional hazards models. Measurements and Main Results: Over a 10.1-year median follow-up, 2,200 deaths occurred among 10,132 participants (age 59.5 ± 9.0 yr; 46.6% women). Death from cardiovascular disease was most frequent in PRISm (31% of deaths). Lung cancer deaths were most frequent in GOLD 1-2 (18% of deaths vs. 9-11% in other groups). Respiratory deaths outpaced competing causes of death in GOLD 3-4, particularly when BODE index ⩾7. St. George's Respiratory Questionnaire score ⩾25 was associated with higher mortality in all groups: Hazard ratio (HR), 1.48 (1.20-1.84) normal spirometry; HR, 1.40 (1.05-1.87) PRISm; HR, 1.80 (1.49-2.17) GOLD 1-2; HR, 1.65 (1.26-2.17) GOLD 3-4. History of respiratory exacerbations was associated with higher mortality in GOLD 1-2 and GOLD 3-4, quantitative emphysema in GOLD 1-2, and airway wall thickness in PRISm and GOLD 3-4. Conclusions: Leading causes of death vary by lung function impairment in tobacco cigarette users. Worse respiratory-related quality of life is associated with all-cause mortality regardless of lung function.
Assuntos
Doença Pulmonar Obstrutiva Crônica , Produtos do Tabaco , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Volume Expiratório Forçado , Pulmão , Qualidade de Vida , EspirometriaRESUMO
BACKGROUND: In this paper, we are interested in interactions between a high-dimensional -omics dataset and clinical covariates. The goal is to evaluate the relationship between a phenotype of interest and a high-dimensional omics pathway, where the effect of the omics data depends on subjects' clinical covariates (age, sex, smoking status, etc.). For instance, metabolic pathways can vary greatly between sexes which may also change the relationship between certain metabolic pathways and a clinical phenotype of interest. We propose partitioning the clinical covariate space and performing a kernel association test within those partitions. To illustrate this idea, we focus on hierarchical partitions of the clinical covariate space and kernel tests on metabolic pathways. RESULTS: We see that our proposed method outperforms competing methods in most simulation scenarios. It can identify different relationships among clinical groups with higher power in most scenarios while maintaining a proper Type I error rate. The simulation studies also show a robustness to the grouping structure within the clinical space. We also apply the method to the COPDGene study and find several clinically meaningful interactions between metabolic pathways, the clinical space, and lung function. CONCLUSION: TreeKernel provides a simple and interpretable process for testing for relationships between high-dimensional omics data and clinical outcomes in the presence of interactions within clinical cohorts. The method is broadly applicable to many studies.
Assuntos
Doença Pulmonar Obstrutiva Crônica , Humanos , Fenótipo , Simulação por ComputadorRESUMO
Chronic obstructive pulmonary disease (COPD) is characterized by nonresolving inflammation fueled by breach in the endothelial barrier and leukocyte recruitment into the airspaces. Among the ligand-receptor axes that control leukocyte recruitment, the full-length fractalkine ligand (CX3CL1)-receptor (CX3CR1) ensures homeostatic endothelial-leukocyte interactions. Cigarette smoke (CS) exposure and respiratory pathogens increase expression of endothelial sheddases, such as a-disintegrin-and-metalloproteinase-domain 17 (ADAM17, TACE), inhibited by the anti-protease α-1 antitrypsin (AAT). In the systemic endothelium, TACE cleaves CX3CL1 to release soluble CX3CL1 (sCX3CL1). During CS exposure, it is not known whether AAT inhibits sCX3CL1 shedding and CX3CR1+ leukocyte transendothelial migration across lung microvasculature. We investigated the mechanism of sCX3CL1 shedding, its role in endothelial-monocyte interactions, and AAT effect on these interactions during acute inflammation. We used two, CS and lipopolysaccharide (LPS) models of acute inflammation in transgenic Cx3cr1gfp/gfp mice and primary human endothelial cells and monocytes to study sCX3CL1-mediated CX3CR1+ monocyte adhesion and migration. We measured sCX3CL1 levels in plasma and bronchoalveolar lavage (BALF) of individuals with COPD. Both sCX3CL1 shedding and CX3CR1+ monocytes transendothelial migration were triggered by LPS and CS exposure in mice, and were significantly attenuated by AAT. The inhibition of monocyte-endothelial adhesion and migration by AAT was TACE-dependent. Compared with healthy controls, sCX3CL1 levels were increased in plasma and BALF of individuals with COPD, and were associated with clinical parameters of emphysema. Our results indicate that inhibition of sCX3CL1 as well as AAT augmentation may be effective approaches to decrease excessive monocyte lung recruitment during acute and chronic inflammatory states.NEW & NOTEWORTHY Our novel findings that AAT and other inhibitors of TACE, the sheddase that controls full-length fractalkine (CX3CL1) endothelial expression, may provide fine-tuning of the CX3CL1-CX3CR1 axis specifically involved in endothelial-monocyte cross talk and leukocyte recruitment to the alveolar space, suggests that AAT and inhibitors of sCX3CL1 signaling may be harnessed to reduce lung inflammation.