Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 156(5): 1096-111, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24581503

RESUMO

Numerous studies have examined the neuronal inputs and outputs of many areas within the mammalian cerebral cortex, but how these areas are organized into neural networks that communicate across the entire cortex is unclear. Over 600 labeled neuronal pathways acquired from tracer injections placed across the entire mouse neocortex enabled us to generate a cortical connectivity atlas. A total of 240 intracortical connections were manually reconstructed within a common neuroanatomic framework, forming a cortico-cortical connectivity map that facilitates comparison of connections from different cortical targets. Connectivity matrices were generated to provide an overview of all intracortical connections and subnetwork clusterings. The connectivity matrices and cortical map revealed that the entire cortex is organized into four somatic sensorimotor, two medial, and two lateral subnetworks that display unique topologies and can interact through select cortical areas. Together, these data provide a resource that can be used to further investigate cortical networks and their corresponding functions.


Assuntos
Córtex Cerebral/fisiologia , Conectoma , Camundongos/fisiologia , Vias Neurais , Animais , Comportamento Animal , Masculino , Camundongos Endogâmicos C57BL
2.
Nature ; 598(7879): 188-194, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616074

RESUMO

The cortico-basal ganglia-thalamo-cortical loop is one of the fundamental network motifs in the brain. Revealing its structural and functional organization is critical to understanding cognition, sensorimotor behaviour, and the natural history of many neurological and neuropsychiatric disorders. Classically, this network is conceptualized to contain three information channels: motor, limbic and associative1-4. Yet this three-channel view cannot explain the myriad functions of the basal ganglia. We previously subdivided the dorsal striatum into 29 functional domains on the basis of the topography of inputs from the entire cortex5. Here we map the multi-synaptic output pathways of these striatal domains through the globus pallidus external part (GPe), substantia nigra reticular part (SNr), thalamic nuclei and cortex. Accordingly, we identify 14 SNr and 36 GPe domains and a direct cortico-SNr projection. The striatonigral direct pathway displays a greater convergence of striatal inputs than the more parallel striatopallidal indirect pathway, although direct and indirect pathways originating from the same striatal domain ultimately converge onto the same postsynaptic SNr neurons. Following the SNr outputs, we delineate six domains in the parafascicular and ventromedial thalamic nuclei. Subsequently, we identify six parallel cortico-basal ganglia-thalamic subnetworks that sequentially transduce specific subsets of cortical information through every elemental node of the cortico-basal ganglia-thalamic loop. Thalamic domains relay this output back to the originating corticostriatal neurons of each subnetwork in a bona fide closed loop.


Assuntos
Gânglios da Base/citologia , Córtex Cerebral/citologia , Vias Neurais , Neurônios/citologia , Tálamo/citologia , Animais , Gânglios da Base/anatomia & histologia , Córtex Cerebral/anatomia & histologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tálamo/anatomia & histologia
3.
Nature ; 598(7879): 159-166, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616071

RESUMO

An essential step toward understanding brain function is to establish a structural framework with cellular resolution on which multi-scale datasets spanning molecules, cells, circuits and systems can be integrated and interpreted1. Here, as part of the collaborative Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based anatomical description of one exemplar brain structure, the mouse primary motor cortex, upper limb area (MOp-ul). Using genetic and viral labelling, barcoded anatomy resolved by sequencing, single-neuron reconstruction, whole-brain imaging and cloud-based neuroinformatics tools, we delineated the MOp-ul in 3D and refined its sublaminar organization. We defined around two dozen projection neuron types in the MOp-ul and derived an input-output wiring diagram, which will facilitate future analyses of motor control circuitry across molecular, cellular and system levels. This work provides a roadmap towards a comprehensive cellular-resolution description of mammalian brain architecture.


Assuntos
Córtex Motor/anatomia & histologia , Córtex Motor/citologia , Neurônios/classificação , Animais , Atlas como Assunto , Feminino , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Glutamatos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroimagem , Neurônios/citologia , Neurônios/metabolismo , Especificidade de Órgãos , Análise de Sequência de RNA , Análise de Célula Única
4.
J Comp Neurol ; 529(3): 576-594, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32511750

RESUMO

Here we present a flatmap of the mouse central nervous system (CNS) (brain) and substantially enhanced flatmaps of the rat and human brain. Also included are enhanced representations of nervous system white matter tracts, ganglia, and nerves, and an enhanced series of 10 flatmaps showing different stages of rat brain development. The adult mouse and rat brain flatmaps provide layered diagrammatic representation of CNS divisions, according to their arrangement in corresponding reference atlases: Brain Maps 4.0 (BM4, rat) (Swanson, The Journal of Comparative Neurology, 2018, 526, 935-943), and the first version of the Allen Reference Atlas (mouse) (Dong, The Allen reference atlas, (book + CD-ROM): A digital color brain atlas of the C57BL/6J male mouse, 2007). To facilitate comparative analysis, both flatmaps are scaled equally, and the divisional hierarchy of gray matter follows a topographic arrangement used in BM4. Also included with the mouse and rat brain flatmaps are cerebral cortex atlas level contours based on the reference atlases, and direct graphical and tabular comparison of regional parcellation. To encourage use of the brain flatmaps, they were designed and organized, with supporting reference tables, for ease-of-use and to be amenable to computational applications. We demonstrate how they can be adapted to represent novel parcellations resulting from experimental data, and we provide a proof-of-concept for how they could form the basis of a web-based graphical data viewer and analysis platform. The mouse, rat, and human brain flatmap vector graphics files (Adobe Reader/Acrobat viewable and Adobe Illustrator editable) and supporting tables are provided open access; they constitute a broadly applicable neuroscience toolbox resource for researchers seeking to map and perform comparative analysis of brain data.


Assuntos
Atlas como Assunto , Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Ilustração Médica , Publicação de Acesso Aberto , Animais , Humanos , Camundongos , Ratos , Especificidade da Espécie
5.
Nat Commun ; 12(1): 4004, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183678

RESUMO

The superior colliculus (SC) receives diverse and robust cortical inputs to drive a range of cognitive and sensorimotor behaviors. However, it remains unclear how descending cortical input arising from higher-order associative areas coordinate with SC sensorimotor networks to influence its outputs. Here, we construct a comprehensive map of all cortico-tectal projections and identify four collicular zones with differential cortical inputs: medial (SC.m), centromedial (SC.cm), centrolateral (SC.cl) and lateral (SC.l). Further, we delineate the distinctive brain-wide input/output organization of each collicular zone, assemble multiple parallel cortico-tecto-thalamic subnetworks, and identify the somatotopic map in the SC that displays distinguishable spatial properties from the somatotopic maps in the neocortex and basal ganglia. Finally, we characterize interactions between those cortico-tecto-thalamic and cortico-basal ganglia-thalamic subnetworks. This study provides a structural basis for understanding how SC is involved in integrating different sensory modalities, translating sensory information to motor command, and coordinating different actions in goal-directed behaviors.


Assuntos
Colículos Superiores/anatomia & histologia , Colículos Superiores/fisiologia , Visão Ocular/fisiologia , Percepção Visual/fisiologia , Animais , Gânglios da Base/fisiologia , Cognição/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Visuais
6.
Nat Commun ; 12(1): 2859, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001873

RESUMO

The basolateral amygdalar complex (BLA) is implicated in behaviors ranging from fear acquisition to addiction. Optogenetic methods have enabled the association of circuit-specific functions to uniquely connected BLA cell types. Thus, a systematic and detailed connectivity profile of BLA projection neurons to inform granular, cell type-specific interrogations is warranted. Here, we apply machine-learning based computational and informatics analysis techniques to the results of circuit-tracing experiments to create a foundational, comprehensive BLA connectivity map. The analyses identify three distinct domains within the anterior BLA (BLAa) that house target-specific projection neurons with distinguishable morphological features. We identify brain-wide targets of projection neurons in the three BLAa domains, as well as in the posterior BLA, ventral BLA, posterior basomedial, and lateral amygdalar nuclei. Inputs to each nucleus also are identified via retrograde tracing. The data suggests that connectionally unique, domain-specific BLAa neurons are associated with distinct behavior networks.


Assuntos
Potenciais de Ação/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Medo/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Algoritmos , Animais , Complexo Nuclear Basolateral da Amígdala/citologia , Medo/psicologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Rede Nervosa/citologia , Optogenética/métodos
7.
Nat Commun ; 10(1): 1549, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30948706

RESUMO

Characterizing the precise three-dimensional morphology and anatomical context of neurons is crucial for neuronal cell type classification and circuitry mapping. Recent advances in tissue clearing techniques and microscopy make it possible to obtain image stacks of intact, interweaving neuron clusters in brain tissues. As most current 3D neuronal morphology reconstruction methods are only applicable to single neurons, it remains challenging to reconstruct these clusters digitally. To advance the state of the art beyond these challenges, we propose a fast and robust method named G-Cut that is able to automatically segment individual neurons from an interweaving neuron cluster. Across various densely interconnected neuron clusters, G-Cut achieves significantly higher accuracies than other state-of-the-art algorithms. G-Cut is intended as a robust component in a high throughput informatics pipeline for large-scale brain mapping projects.


Assuntos
Mapeamento Encefálico/métodos , Simulação por Computador , Rede Nervosa , Neurônios/citologia , Algoritmos , Biologia Computacional , Modelos Teóricos , Neurônios/ultraestrutura
8.
Nat Neurosci ; 21(11): 1628-1643, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30297807

RESUMO

Understanding the organization of the hippocampus is fundamental to understanding brain function related to learning, memory, emotions, and diseases such as Alzheimer's disease. Physiological studies in humans and rodents have suggested that there is both structural and functional heterogeneity along the longitudinal axis of the hippocampus. However, the recent discovery of discrete gene expression domains in the mouse hippocampus has provided the opportunity to re-evaluate hippocampal connectivity. To integrate mouse hippocampal gene expression and connectivity, we mapped the distribution of distinct gene expression patterns in mouse hippocampus and subiculum to create the Hippocampus Gene Expression Atlas (HGEA). Notably, previously unknown subiculum gene expression patterns revealed a hidden laminar organization. Guided by the HGEA, we constructed the most detailed hippocampal connectome available using Mouse Connectome Project ( http://www.mouseconnectome.org ) tract tracing data. Our results define the hippocampus' multiscale network organization and elucidate each subnetwork's unique brain-wide connectivity patterns.


Assuntos
Encéfalo/fisiologia , Conectoma , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Expressão Gênica , Camundongos , Vias Neurais/fisiologia
9.
Nat Neurosci ; 19(8): 1100-14, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27322419

RESUMO

Different cortical areas are organized into distinct intracortical subnetworks. The manner in which descending pathways from the entire cortex interact subcortically as a network remains unclear. We developed an open-access comprehensive mesoscale mouse cortico-striatal projectome: a detailed connectivity projection map from the entire cerebral cortex to the dorsal striatum or caudoputamen (CP) in rodents. On the basis of these projections, we used new computational neuroanatomical tools to identify 29 distinct functional striatal domains. Furthermore, we characterized different cortico-striatal networks and how they reconfigure across the rostral-caudal extent of the CP. The workflow was also applied to select cortico-striatal connections in two different mouse models of disconnection syndromes to demonstrate its utility for characterizing circuitry-specific connectopathies. Together, our results provide the structural basis for studying the functional diversity of the dorsal striatum and disruptions of cortico-basal ganglia networks across a broad range of disorders.


Assuntos
Gânglios da Base/fisiologia , Córtex Cerebral/fisiologia , Vias Neurais/fisiologia , Animais , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais
10.
Brain Imaging Behav ; 8(2): 300-10, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24203652

RESUMO

The Informatics Visualization for Neuroimaging (INVIZIAN) framework allows one to graphically display image and meta-data information from sizeable collections of neuroimaging data as a whole using a dynamic and compelling user interface. Users can fluidly interact with an entire collection of cortical surfaces using only their mouse. In addition, users can cluster and group brains according in multiple ways for subsequent comparison using graphical data mining tools. In this article, we illustrate the utility of INVIZIAN for simultaneous exploration and mining a large collection of extracted cortical surface data arising in clinical neuroimaging studies of patients with Alzheimer's Disease, mild cognitive impairment, as well as healthy control subjects. Alzheimer's Disease is particularly interesting due to the wide-spread effects on cortical architecture and alterations of volume in specific brain areas associated with memory. We demonstrate INVIZIAN's ability to render multiple brain surfaces from multiple diagnostic groups of subjects, showcase the interactivity of the system, and showcase how INVIZIAN can be employed to generate hypotheses about the collection of data which would be suitable for direct access to the underlying raw data and subsequent formal statistical analysis. Specifically, we use INVIZIAN show how cortical thickness and hippocampal volume differences between group are evident even in the absence of more formal hypothesis testing. In the context of neurological diseases linked to brain aging such as AD, INVIZIAN provides a unique means for considering the entirety of whole brain datasets, look for interesting relationships among them, and thereby derive new ideas for further research and study.


Assuntos
Doença de Alzheimer/patologia , Encéfalo/patologia , Disfunção Cognitiva/patologia , Mineração de Dados/métodos , Processamento de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Idoso , Envelhecimento/patologia , Córtex Cerebral/patologia , Bases de Dados Factuais , Substância Cinzenta/patologia , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Tamanho do Órgão , Interface Usuário-Computador
11.
Brain Imaging Behav ; 8(2): 153-82, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24399358

RESUMO

The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) Consortium is a collaborative network of researchers working together on a range of large-scale studies that integrate data from 70 institutions worldwide. Organized into Working Groups that tackle questions in neuroscience, genetics, and medicine, ENIGMA studies have analyzed neuroimaging data from over 12,826 subjects. In addition, data from 12,171 individuals were provided by the CHARGE consortium for replication of findings, in a total of 24,997 subjects. By meta-analyzing results from many sites, ENIGMA has detected factors that affect the brain that no individual site could detect on its own, and that require larger numbers of subjects than any individual neuroimaging study has currently collected. ENIGMA's first project was a genome-wide association study identifying common variants in the genome associated with hippocampal volume or intracranial volume. Continuing work is exploring genetic associations with subcortical volumes (ENIGMA2) and white matter microstructure (ENIGMA-DTI). Working groups also focus on understanding how schizophrenia, bipolar illness, major depression and attention deficit/hyperactivity disorder (ADHD) affect the brain. We review the current progress of the ENIGMA Consortium, along with challenges and unexpected discoveries made on the way.


Assuntos
Mapeamento Encefálico/métodos , Estudo de Associação Genômica Ampla/métodos , Neuroimagem/métodos , Comportamento Cooperativo , Humanos , Metanálise como Assunto
12.
Front Neuroinform ; 6: 11, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22536181

RESUMO

While technological advancements in neuroimaging scanner engineering have improved the efficiency of data acquisition, electronic data capture methods will likewise significantly expedite the populating of large-scale neuroimaging databases. As they do and these archives grow in size, a particular challenge lies in examining and interacting with the information that these resources contain through the development of compelling, user-driven approaches for data exploration and mining. In this article, we introduce the informatics visualization for neuroimaging (INVIZIAN) framework for the graphical rendering of, and dynamic interaction with the contents of large-scale neuroimaging data sets. We describe the rationale behind INVIZIAN, detail its development, and demonstrate its usage in examining a collection of over 900 T1-anatomical magnetic resonance imaging (MRI) image volumes from across a diverse set of clinical neuroimaging studies drawn from a leading neuroimaging database. Using a collection of cortical surface metrics and means for examining brain similarity, INVIZIAN graphically displays brain surfaces as points in a coordinate space and enables classification of clusters of neuroanatomically similar MRI images and data mining. As an initial step toward addressing the need for such user-friendly tools, INVIZIAN provides a highly unique means to interact with large quantities of electronic brain imaging archives in ways suitable for hypothesis generation and data mining.

13.
Proc IEEE Int Symp Biomed Imaging ; : 1117-1120, 2011 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-21743844

RESUMO

We introduce a new representation of cortical regions via distribution functions of their features. The distribution functions are estimated non-parametrically from the data and are observed to be non Gaussian. Cortical pattern matching is enabled by using the information-based Jensen-Shannon divergence as a measure between features. Our approach explicitly avoids pairwise registrations between brains, but instead focuses on modeling and discriminating between the cortical structural patterns. We demonstrate our approach on 120 subject brains from an Alzheimer's dataset, and present applications to clustering, classification, and dimension reduction.

14.
Proc IEEE Symp Vis Anal Sci Technol ; 2010(25-26 Oct. 2010): 237, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21318096

RESUMO

We present a unified framework for data processing, mining and interactive visualization of large-scale neuroanatomical databases. The input data is assumed to lie in a specific atlas space, or simply exist as a separate collection. Users can specify their own atlas for comparative analyses. The original data exist as MRI images in standard formats. It is uploaded to a remote server and processed offline by a parallelized pipeline workflow. This workflow transforms the data to represent it as both volumetric and triangular mesh cortical surfaces. We use multiresolution representations to scale complexity to data storage availability as well as graphical processing performance. Our workflow implements predefined metrics for clustering and classification, and data projection schemes to aid in visualization. Additionally the system provides a visual query interface for performing selection requests based on user-defined search criteria.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA