Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Bioorg Med Chem Lett ; 29(19): 126610, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31471167

RESUMO

Focussed studies on imidazopyridine inhibitors of Plasmodium falciparum cyclic GMP-dependent protein kinase (PfPKG) have significantly advanced the series towards desirable in vitro property space. LLE-based approaches towards combining improvements in cell potency, key physicochemical parameters and structural novelty are described, and a structure-based design hypothesis relating to substituent regiochemistry has directed efforts towards key examples with well-balanced potency, ADME and kinase selectivity profiles.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Imidazóis/química , Malária/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Piridinas/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Humanos , Malária/enzimologia , Malária/parasitologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Plasmodium falciparum/enzimologia , Conformação Proteica , Inibidores de Proteínas Quinases/química
2.
Bioorg Med Chem Lett ; 29(3): 509-514, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30553738

RESUMO

Development of a class of bicyclic inhibitors of the Plasmodium falciparum cyclic GMP-dependent protein kinase (PfPKG), starting from known compounds with activity against a related parasite PKG orthologue, is reported. Examination of key sub-structural elements led to new compounds with good levels of inhibitory activity against the recombinant kinase and in vitro activity against the parasite. Key examples were shown to possess encouraging in vitro ADME properties, and computational analysis provided valuable insight into the origins of the observed activity profiles.


Assuntos
Antimaláricos/farmacologia , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Imidazóis/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Antimaláricos/síntese química , Antimaláricos/química , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Imidazóis/síntese química , Imidazóis/química , Ligantes , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/enzimologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade
3.
Malar J ; 17(1): 219, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859096

RESUMO

BACKGROUND: The quantitative suspension array technology (qSAT) is a useful platform for malaria immune marker discovery. However, a major challenge for large sero-epidemiological and malaria vaccine studies is the comparability across laboratories, which requires the access to standardized control reagents for assay optimization, to monitor performance and improve reproducibility. Here, the Plasmodium falciparum antibody reactivities of the newly available WHO reference reagent for anti-malaria human plasma (10/198) and of additional customized positive controls were examined with seven in-house qSAT multiplex assays measuring IgG, IgG1-4 subclasses, IgM and IgE against a panel of 40 antigens. The different positive controls were tested at different incubation times and temperatures (4 °C overnight, 37 °C 2 h, room temperature 1 h) to select the optimal conditions. RESULTS: Overall, the WHO reference reagent had low IgG2, IgG4, IgM and IgE, and also low anti-CSP antibody levels, thus this reagent was enriched with plasmas from RTS,S-vaccinated volunteers to be used as standard for CSP-based vaccine studies. For the IgM assay, another customized plasma pool prepared with samples from malaria primo-infected adults with adequate IgM levels proved to be more adequate as a positive control. The range and magnitude of IgG and IgG1-4 responses were highest when the WHO reference reagent was incubated with antigen-coupled beads at 4 °C overnight. IgG levels measured in the negative control did not vary between incubations at 37 °C 2 h and 4 °C overnight, indicating no difference in unspecific binding. CONCLUSIONS: With this study, the immunogenicity profile of the WHO reference reagent, including seven immunoglobulin isotypes and subclasses, and more P. falciparum antigens, also those included in the leading RTS,S malaria vaccine, was better characterized. Overall, incubation of samples at 4 °C overnight rendered the best performance for antibody measurements against the antigens tested. Although the WHO reference reagent performed well to measure IgG to the majority of the common P. falciparum blood stage antigens tested, customized pools may need to be used as positive controls depending on the antigens (e.g. pre-erythrocytic proteins of low natural immunogenicity) and isotypes/subclasses (e.g. IgM) under study.


Assuntos
Anticorpos Antiprotozoários/análise , Isotipos de Imunoglobulinas/análise , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Testes Sorológicos/métodos , Imunoglobulina E/análise , Imunoglobulina G/análise , Imunoglobulina M/análise , Vacinas Antimaláricas/imunologia , Estudos Soroepidemiológicos
4.
Bioorg Med Chem Lett ; 28(19): 3168-3173, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30174152

RESUMO

A series of trisubstituted thiazoles have been identified as potent inhibitors of Plasmodium falciparum (Pf) cGMP-dependent protein kinase (PfPKG) through template hopping from known Eimeria PKG (EtPKG) inhibitors. The thiazole series has yielded compounds with improved potency, kinase selectivity and good in vitro ADME properties. These compounds could be useful tools in the development of new anti-malarial drugs in the fight against drug resistant malaria.


Assuntos
Antimaláricos/farmacologia , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Plasmodium falciparum/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Tiazóis/farmacologia , Alquilação , Antimaláricos/química , Humanos , Oxirredução , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Tiazóis/química
5.
Malar J ; 16(1): 314, 2017 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-28779755

RESUMO

BACKGROUND: At a World Health Organization (WHO) sponsored meeting it was concluded that there is an urgent need for a reference preparation that contains antibodies against malaria antigens in order to support serology studies and vaccine development. It was proposed that this reference would take the form of a lyophilized serum or plasma pool from a malaria-endemic area. In response, an immunoassay standard, comprising defibrinated human plasma has been prepared and evaluated in a collaborative study. RESULTS: A pool of human plasma from a malaria endemic region was collected from 140 single plasma donations selected for reactivity to Plasmodium falciparum apical membrane antigen-1 (AMA-1) and merozoite surface proteins (MSP-119, MSP-142, MSP-2 and MSP-3). This pool was defibrinated, filled and freeze dried into a single batch of ampoules to yield a stable source of naturally occurring antibodies to P. falciparum. The preparation was evaluated by an enzyme-linked immunosorbent assay (ELISA) in a collaborative study with sixteen participants from twelve different countries. This anti-malaria human serum preparation (NIBSC Code: 10/198) was adopted by the WHO Expert Committee on Biological Standardization (ECBS) in October 2014, as the first WHO reference reagent for anti-malaria (Plasmodium falciparum) human serum with an assigned arbitrary unitage of 100 units (U) per ampoule. CONCLUSION: Analysis of the reference reagent in a collaborative study has demonstrated the benefit of this preparation for the reduction in inter- and intra-laboratory variability in ELISA. Whilst locally sourced pools are regularly use for harmonization both within and between a few laboratories, the presence of a WHO-endorsed reference reagent should enable optimal harmonization of malaria serological assays either by direct use of the reference reagent or calibration of local standards against this WHO reference. The intended uses of this reference reagent, a multivalent preparation, are (1) to allow cross-comparisons of results of vaccine trials performed in different centres/with different products; (2) to facilitate standardization and harmonization of immunological assays used in epidemiology research; and (3) to allow optimization and validation of immunological assays used in malaria vaccine development.


Assuntos
Antígenos de Protozoários , Imunoensaio/normas , Malária Falciparum/sangue , Plasmodium falciparum/imunologia , Testes Sorológicos/normas , Anticorpos Antiprotozoários/sangue , Liofilização , Humanos , Proteínas de Membrana/normas , Proteínas de Protozoários/normas , Padrões de Referência , Organização Mundial da Saúde
6.
Infect Immun ; 83(6): 2575-82, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25870227

RESUMO

Plasmodium falciparum merozoites use diverse alternative erythrocyte receptors for invasion and variably express cognate ligands encoded by the erythrocyte binding antigen (eba) and reticulocyte binding-like homologue (Rh) gene families. Previous analyses conducted on parasites from single populations in areas of endemicity revealed a wide spectrum of invasion phenotypes and expression profiles, although comparisons across studies have been limited by the use of different protocols. For direct comparisons within and among populations, clinical isolates from three different West African sites of endemicity (in Ghana, Guinea, and Senegal) were cryopreserved and cultured ex vivo after thawing in a single laboratory to assay invasion of target erythrocytes pretreated with enzymes affecting receptor subsets. Complete invasion assay data from 67 isolates showed no differences among the populations in the broad range of phenotypes measured by neuraminidase treatment (overall mean, 40.6% inhibition) or trypsin treatment (overall mean, 83.3% inhibition). The effects of chymotrypsin treatment (overall mean, 79.2% inhibition) showed heterogeneity across populations (Kruskall-Wallis P = 0.023), although the full phenotypic range was seen in each. Schizont-stage transcript data for a panel of 8 invasion ligand genes (eba175, eba140, eba181, Rh1, Rh2a, Rh2b, Rh4, and Rh5) were obtained for 37 isolates, showing similar ranges of variation in each population except that eba175 levels tended to be higher in parasites from Ghana than in those from Senegal (whereas levels of eba181 and Rh2b were lower in parasites from Ghana). The broad diversity in invasion phenotypes and gene expression seen within each local population, with minimal differences among them, is consistent with a hypothesis of immune selection maintaining parasite variation.


Assuntos
Eritrócitos/parasitologia , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Merozoítos/metabolismo , Plasmodium falciparum/fisiologia , Criança , Pré-Escolar , Doenças Endêmicas , Regulação da Expressão Gênica , Gana/epidemiologia , Guiné/epidemiologia , Humanos , Lactente , Senegal/epidemiologia
7.
Antimicrob Agents Chemother ; 60(3): 1464-75, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26711771

RESUMO

Imidazopyridazine compounds are potent, ATP-competitive inhibitors of calcium-dependent protein kinase 1 (CDPK1) and of Plasmodium falciparum parasite growth in vitro. Here, we show that these compounds can be divided into two classes depending on the nature of the aromatic linker between the core and the R2 substituent group. Class 1 compounds have a pyrimidine linker and inhibit parasite growth at late schizogony, whereas class 2 compounds have a nonpyrimidine linker and inhibit growth in the trophozoite stage, indicating different modes of action for the two classes. The compounds also inhibited cyclic GMP (cGMP)-dependent protein kinase (PKG), and their potency against this enzyme was greatly reduced by substitution of the enzyme's gatekeeper residue at the ATP binding site. The effectiveness of the class 1 compounds against a parasite line expressing the modified PKG was also substantially reduced, suggesting that these compounds kill the parasite primarily through inhibition of PKG rather than CDPK1. HSP90 was identified as a binding partner of class 2 compounds, and a representative compound bound to the ATP binding site in the N-terminal domain of HSP90. Reducing the size of the gatekeeper residue of CDPK1 enabled inhibition of the enzyme by bumped kinase inhibitors; however, a parasite line expressing the modified enzyme showed no change in sensitivity to these compounds. Taken together, these findings suggest that CDPK1 may not be a suitable target for further inhibitor development and that the primary mechanism through which the imidazopyridazines kill parasites is by inhibition of PKG or HSP90.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Antimaláricos/química , Linhagem Celular , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Imidazóis/química , Imidazóis/farmacologia , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular/métodos , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Piridazinas/química , Piridazinas/farmacologia
8.
Nat Chem Biol ; 9(10): 651-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23934245

RESUMO

Although there have been numerous advances in our understanding of how apicomplexan parasites such as Toxoplasma gondii enter host cells, many of the signaling pathways and enzymes involved in the organization of invasion mediators remain poorly defined. We recently performed a forward chemical-genetic screen in T. gondii and identified compounds that markedly enhanced infectivity. Although molecular dissection of invasion has benefited from the use of small-molecule inhibitors, the mechanisms underlying induction of invasion by small-molecule enhancers have never been described. Here we identify the Toxoplasma ortholog of human APT1, palmitoyl protein thioesterase-1 (TgPPT1), as the target of one class of small-molecule enhancers. Inhibition of this uncharacterized thioesterase triggered secretion of invasion-associated organelles, increased motility and enhanced the invasive capacity of tachyzoites. We demonstrate that TgPPT1 is a bona fide depalmitoylase, thereby establishing an important role for dynamic and reversible palmitoylation in host-cell invasion by T. gondii.


Assuntos
Inibidores Enzimáticos/farmacologia , Células Epiteliais/parasitologia , Bibliotecas de Moléculas Pequenas/farmacologia , Tioléster Hidrolases/antagonistas & inibidores , Toxoplasma/efeitos dos fármacos , Toxoplasma/enzimologia , Animais , Linhagem Celular , Cumarínicos/química , Cumarínicos/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo , Toxoplasma/metabolismo , Toxoplasma/patogenicidade
9.
Eukaryot Cell ; 12(3): 399-410, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23291621

RESUMO

The tissue cyst formed by the bradyzoite stage of Toxoplasma gondii is essential for persistent infection of the host and oral transmission. Bradyzoite pseudokinase 1 (BPK1) is a component of the cyst wall, but nothing has previously been known about its function. Here, we show that immunoprecipitation of BPK1 from in vitro bradyzoite cultures, 4 days postinfection, identifies at least four associating proteins: MAG1, MCP4, GRA8, and GRA9. To determine the role of BPK1, a strain of Toxoplasma was generated with the bpk1 locus deleted. This BPK1 knockout strain (Δbpk1) was investigated in vitro and in vivo. No defect was found in terms of in vitro cyst formation and no difference in pathogenesis or cyst burden 4 weeks postinfection (wpi) was detected after intraperitoneal (i.p.) infection with Δbpk1 tachyzoites, although the Δbpk1 cysts were significantly smaller than parental or BPK1-complemented strains at 8 wpi. Pepsin-acid treatment of 4 wpi in vivo cysts revealed that Δbpk1 parasites are significantly more sensitive to this treatment than the parental and complemented strains. Consistent with this, 4 wpi Δbpk1 cysts showed reduced ability to cause oral infection compared to the parental and complemented strains. Together, these data reveal that BPK1 plays a crucial role in the in vivo development and infectivity of Toxoplasma cysts.


Assuntos
Cistos/parasitologia , Proteínas de Protozoários/metabolismo , Toxoplasma/patogenicidade , Animais , Cistos/patologia , Feminino , Deleção de Genes , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Protozoários/genética , Esporos de Protozoários/genética , Esporos de Protozoários/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo , Toxoplasmose/parasitologia , Toxoplasmose/patologia
10.
Proc Natl Acad Sci U S A ; 108(26): 10568-73, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21670272

RESUMO

Toxoplasma gondii is a member of the phylum Apicomplexa that includes several important human pathogens, such as Cryptosporidium and Plasmodium falciparum, the causative agent of human malaria. It is an obligate intracellular parasite that can cause severe disease in congenitally infected neonates and immunocompromised individuals. Despite the importance of attachment and invasion to the success of the parasite, little is known about the underlying mechanisms that drive these processes. Here we describe a screen to identify small molecules that block the process of host cell invasion by the T. gondii parasite. We identified a small molecule that specifically and irreversibly blocks parasite attachment and subsequent invasion of host cells. Using tandem orthogonal proteolysis-activity-based protein profiling, we determined that this compound covalently modifies a single cysteine residue in a poorly characterized protein homologous to the human protein DJ-1. Mutation of this key cysteine residue in the native gene sequence resulted in parasites that were resistant to inhibition of host cell attachment and invasion by the compound. Further analysis of the invasion phenotype confirmed that modification of Cys127 on TgDJ-1 resulted in a block of microneme secretion and motility, even in the presence of direct stimulators of calcium release. Together, our results suggest that TgDJ-1 plays an important role that is likely downstream of the calcium flux required for microneme secretion, parasite motility, and subsequent invasion of host cells.


Assuntos
Proteínas de Protozoários/fisiologia , Toxoplasma/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Citosol/metabolismo , Primers do DNA , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Fluorescência , Toxoplasma/efeitos dos fármacos , Toxoplasma/genética
11.
Mol Cell Proteomics ; 10(5): M110.001636, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20943600

RESUMO

The obligate intracellular parasite pathogen Plasmodium falciparum is the causative agent of malaria, a disease that results in nearly one million deaths per year. A key step in disease pathology in the human host is the parasite-mediated rupture of red blood cells, a process that requires extensive proteolysis of a number of host and parasite proteins. However, only a relatively small number of specific proteolytic processing events have been characterized. Here we describe the application of the Protein Topography and Migration Analysis Platform (PROTOMAP) (Dix, M. M., Simon, G. M., and Cravatt, B. F. (2008) Global mapping of the topography and magnitude of proteolytic events in apoptosis. Cell 134, 679-691; Simon, G. M., Dix, M. M., and Cravatt, B. F. (2009) Comparative assessment of large-scale proteomic studies of apoptotic proteolysis. ACS Chem. Biol. 4, 401-408) technology to globally profile proteolytic events occurring over the last 6-8 h of the intraerythrocytic cycle of P. falciparum. Using this method, we were able to generate peptographs for a large number of proteins at 6 h prior to rupture as well as at the point of rupture and in purified merozoites after exit from the host cell. These peptographs allowed assessment of proteolytic processing as well as changes in both protein localization and overall stage-specific expression of a large number of parasite proteins. Furthermore, by using a highly selective inhibitor of the cysteine protease dipeptidyl aminopeptidase 3 (DPAP3) that has been shown to be a key regulator of host cell rupture, we were able to identify specific substrates whose processing may be of particular importance to the process of host cell rupture. These results provide the first global map of the proteolytic processing events that take place as the human malarial parasite extracts itself from the host red blood cell. These data also provide insight into the biochemical events that take place during host cell rupture and are likely to be valuable for the study of proteases that could potentially be targeted for therapeutic gain.


Assuntos
Eritrócitos/parasitologia , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Proteoma/metabolismo , Software , Sequência de Aminoácidos , Técnicas de Cultura de Células , Inibidores de Cisteína Proteinase/farmacologia , Citoplasma/química , Citoplasma/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Eritrócitos/metabolismo , Eritrócitos/patologia , Interações Hospedeiro-Parasita , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Merozoítos/fisiologia , Peso Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/química
12.
Cell Rep ; 42(7): 112681, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37389992

RESUMO

Human monoclonal antibodies (hmAbs) targeting the Plasmodium falciparum circumsporozoite protein (PfCSP) on the sporozoite surface are a promising tool for preventing malaria infection. However, their mechanisms of protection remain unclear. Here, using 13 distinctive PfCSP hmAbs, we provide a comprehensive view of how PfCSP hmAbs neutralize sporozoites in host tissues. Sporozoites are most vulnerable to hmAb-mediated neutralization in the skin. However, rare but potent hmAbs additionally neutralize sporozoites in the blood and liver. Efficient protection in tissues mainly associates with high-affinity and high-cytotoxicity hmAbs inducing rapid parasite loss-of-fitness in the absence of complement and host cells in vitro. A 3D-substrate assay greatly enhances hmAb cytotoxicity and mimics the skin-dependent protection, indicating that the physical stress imposed on motile sporozoites by the skin is crucial for unfolding the protective potential of hmAbs. This functional 3D cytotoxicity assay can thus be useful for downselecting potent anti-PfCSP hmAbs and vaccines.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Animais , Humanos , Plasmodium falciparum , Proteínas de Protozoários , Imunoglobulinas , Esporozoítos
13.
Front Cell Infect Microbiol ; 12: 901253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782147

RESUMO

Malaria, an infection caused by apicomplexan parasites of the genus Plasmodium, continues to exact a significant toll on public health with over 200 million cases world-wide, and annual deaths in excess of 600,000. Considerable progress has been made to reduce malaria burden in endemic countries in the last two decades. However, parasite and mosquito resistance to frontline chemotherapies and insecticides, respectively, highlights the continuing need for the development of safe and effective vaccines. Here we describe the development of recombinant human antibodies to three target proteins from Plasmodium falciparum: reticulocyte binding protein homologue 5 (PfRH5), cysteine-rich protective antigen (PfCyRPA), and circumsporozoite protein (PfCSP). All three proteins are key targets in the development of vaccines for blood-stage or pre-erythrocytic stage infections. We have developed potent anti-PfRH5, PfCyRPA and PfCSP monoclonal antibodies that will prove useful tools for the standardisation of assays in preclinical research and the assessment of these antigens in clinical trials. We have generated some very potent anti-PfRH5 and anti-PfCyRPA antibodies with some clones >200 times more potent than the polyclonal anti-AMA-1 antibodies used for the evaluation of blood stage antigens. While the monoclonal and polyclonal antibodies are not directly comparable, the data provide evidence that these new antibodies are very good at blocking invasion. These antibodies will therefore provide a valuable resource and have potential as biological standards to help harmonise pre-clinical malaria research.


Assuntos
Anticorpos Monoclonais , Plasmodium falciparum , Animais , Anticorpos Antiprotozoários , Proteínas de Transporte , Eritrócitos , Humanos
14.
Nat Commun ; 13(1): 933, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177602

RESUMO

Understanding mechanisms of antibody synergy is important for vaccine design and antibody cocktail development. Examples of synergy between antibodies are well-documented, but the mechanisms underlying these relationships often remain poorly understood. The leading blood-stage malaria vaccine candidate, CyRPA, is essential for invasion of Plasmodium falciparum into human erythrocytes. Here we present a panel of anti-CyRPA monoclonal antibodies that strongly inhibit parasite growth in in vitro assays. Structural studies show that growth-inhibitory antibodies bind epitopes on a single face of CyRPA. We also show that pairs of non-competing inhibitory antibodies have strongly synergistic growth-inhibitory activity. These antibodies bind to neighbouring epitopes on CyRPA and form lateral, heterotypic interactions which slow antibody dissociation. We predict that such heterotypic interactions will be a feature of many immune responses. Immunogens which elicit such synergistic antibody mixtures could increase the potency of vaccine-elicited responses to provide robust and long-lived immunity against challenging disease targets.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Protozoários/imunologia , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Anticorpos Antiprotozoários/isolamento & purificação , Anticorpos Antiprotozoários/metabolismo , Antígenos de Protozoários/genética , Antígenos de Protozoários/isolamento & purificação , Antígenos de Protozoários/metabolismo , Linhagem Celular , Drosophila melanogaster , Epitopos/imunologia , Humanos , Imunogenicidade da Vacina , Vacinas Antimaláricas/uso terapêutico , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismo , Desenvolvimento de Vacinas
15.
Chem Commun (Camb) ; (4): 480-2, 2008 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-18188474

RESUMO

N-Myristoyl transferase-mediated modification with azide-bearing substrates is introduced as a highly selective and practical method for in vitro and in vivo N-terminal labelling of a recombinant protein using bioorthogonal ligation chemistry.


Assuntos
Aciltransferases/química , Proteínas/química , Animais , Cromatografia Líquida de Alta Pressão , Técnicas In Vitro , Plasmodium falciparum/enzimologia
16.
Biochem J ; 408(2): 173-80, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17714074

RESUMO

Recombinant N-myristoyltransferase of Plasmodium falciparum (termed PfNMT) has been used in the development of a SPA (scintillation proximity assay) suitable for automation and high-throughput screening of inhibitors against this enzyme. The ability to use the SPA has been facilitated by development of an expression and purification system which yields considerably improved quantities of soluble active recombinant PfNMT compared with previous studies. Specifically, yields of pure protein have been increased from 12 microg x l(-1) to >400 microg x l(-1) by use of a synthetic gene with codon usage optimized for expression in an Escherichia coli host. Preliminary small-scale 'piggyback' inhibitor studies using the SPA have identified a family of related molecules containing a core benzothiazole scaffold with IC50 values <50 microM, which demonstrate selectivity over human NMT1. Two of these compounds, when tested against cultured parasites in vitro, reduced parasitaemia by >80% at a concentration of 10 microM.


Assuntos
Aciltransferases/antagonistas & inibidores , Antimaláricos/química , Benzotiazóis/química , Plasmodium falciparum/enzimologia , Aciltransferases/metabolismo , Animais , Benzotiazóis/metabolismo , Inibidores Enzimáticos/química , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo
17.
Biochem J ; 396(2): 277-85, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16480339

RESUMO

The eukaryotic enzyme NMT (myristoyl-CoA:protein N-myristoyltransferase) has been characterized in a range of species from Saccharomyces cerevisiae to Homo sapiens. NMT is essential for viability in a number of human pathogens, including the fungi Candida albicans and Cryptococcus neoformans, and the parasitic protozoa Leishmania major and Trypanosoma brucei. We have purified the Leishmania and T. brucei NMTs as active recombinant proteins and carried out kinetic analyses with their essential fatty acid donor, myristoyl-CoA and specific peptide substrates. A number of inhibitory compounds that target NMT in fungal species have been tested against the parasite enzymes in vitro and against live parasites in vivo. Two of these compounds inhibit TbNMT with IC50 values of <1 microM and are also active against mammalian parasite stages, with ED50 (the effective dose that allows 50% cell growth) values of 16-66 microM and low toxicity to murine macrophages. These results suggest that targeting NMT could be a valid approach for the development of chemotherapeutic agents against infectious diseases including African sleeping sickness and Nagana.


Assuntos
Aciltransferases/antagonistas & inibidores , Aciltransferases/metabolismo , Leishmania major/enzimologia , Trypanosoma brucei brucei/enzimologia , Animais , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Escherichia coli/metabolismo , Cinética , Leishmania major/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Fatores de Tempo , Trypanosoma brucei brucei/metabolismo
18.
Nat Commun ; 8(1): 430, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874661

RESUMO

To combat drug resistance, new chemical entities are urgently required for use in next generation anti-malarial combinations. We report here the results of a medicinal chemistry programme focused on an imidazopyridine series targeting the Plasmodium falciparum cyclic GMP-dependent protein kinase (PfPKG). The most potent compound (ML10) has an IC50 of 160 pM in a PfPKG kinase assay and inhibits P. falciparum blood stage proliferation in vitro with an EC50 of 2.1 nM. Oral dosing renders blood stage parasitaemia undetectable in vivo using a P. falciparum SCID mouse model. The series targets both merozoite egress and erythrocyte invasion, but crucially, also blocks transmission of mature P. falciparum gametocytes to Anopheles stephensi mosquitoes. A co-crystal structure of PvPKG bound to ML10, reveals intimate molecular contacts that explain the high levels of potency and selectivity we have measured. The properties of this series warrant consideration for further development to produce an antimalarial drug.Protein kinases are promising drug targets for treatment of malaria. Here, starting with a medicinal chemistry approach, Baker et al. generate an imidazopyridine that selectively targets Plasmodium falciparum PKG, inhibits blood stage parasite growth in vitro and in mice and blocks transmission to mosquitoes.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Imidazóis/uso terapêutico , Malária/enzimologia , Malária/transmissão , Piridinas/uso terapêutico , Animais , Linhagem Celular , Cristalografia por Raios X , Culicidae , Proteínas Quinases Dependentes de GMP Cíclico/química , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imidazóis/farmacologia , Estágios do Ciclo de Vida/efeitos dos fármacos , Malária/tratamento farmacológico , Camundongos Endogâmicos BALB C , Modelos Moleculares , Plasmodium chabaudi/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Resultado do Tratamento
19.
Vaccine ; 33(46): 6137-44, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26431986

RESUMO

The deployment of a safe and effective malaria vaccine will be an important tool for the control of malaria and the reduction in malaria deaths. With the launch of the 2030 Malaria Vaccine Technology Roadmap, the malaria community has updated the goals and priorities for the development of such a vaccine and is now paving the way for a second phase of malaria vaccine development. During a workshop in Brussels in November 2014, hosted by the European Vaccine Initiative, key players from the European, North American and African malaria vaccine community discussed European strategies for future malaria vaccine development in the global context. The recommendations of the European malaria community should guide researchers, policy makers and funders of global health research and development in fulfilling the ambitious goals set in the updated Malaria Vaccine Technology Roadmap.


Assuntos
Descoberta de Drogas/métodos , Educação , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/isolamento & purificação , Descoberta de Drogas/tendências , Saúde Global , Humanos
20.
Microbes Infect ; 14(10): 831-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22613210

RESUMO

The 3'-5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) is the main mediator of cGMP signalling in the malaria parasite. This article reviews the role of PKG in Plasmodium falciparum during gametogenesis and blood stage schizont rupture, as well as the role of the Plasmodium berghei orthologue in ookinete differentiation and motility, and liver stage schizont development. The current views on potential effector proteins downstream of PKG and the mechanisms that may regulate cyclic nucleotide levels are presented.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Regulação da Expressão Gênica , Plasmodium berghei/fisiologia , Plasmodium falciparum/fisiologia , Transdução de Sinais , Plasmodium berghei/enzimologia , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Plasmodium falciparum/enzimologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA