Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
PLoS Pathog ; 18(12): e1010735, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36534695

RESUMO

Inhalation anthrax has three clinical stages: early-prodromal, intermediate-progressive, and late-fulminant. We report the comprehensive characterization of anthrax toxins, including total protective antigen (PA), total lethal factor (LF), total edema factor (EF), and their toxin complexes, lethal toxin and edema toxin in plasma, during the course of inhalation anthrax in 23 cynomolgus macaques. The toxin kinetics were predominantly triphasic with an early rise (phase-1), a plateau/decline (phase-2), and a final rapid rise (phase-3). Eleven animals had shorter survival times, mean±standard deviation of 58.7±7.6 hours (fast progression), 11 animals had longer survival times, 113±34.4 hours (slow progression), and one animal survived. Median (lower-upper quartile) LF levels at the end-of-phase-1 were significantly higher in animals with fast progression [138 (54.9-326) ng/mL], than in those with slow progression [23.8 (15.6-26.3) ng/mL] (p = 0.0002), and the survivor (11.1 ng/mL). The differences were also observed for other toxins and bacteremia. Animals with slow progression had an extended phase-2 plateau, with low variability of LF levels across all time points and animals. Characterization of phase-2 toxin levels defined upper thresholds; critical levels for exiting phase-2 and entering the critical phase-3, 342 ng/mL (PA), 35.8 ng/mL (LF), and 1.10 ng/mL (EF). The thresholds were exceeded earlier in animals with fast progression (38.5±7.4 hours) and later in animals with slow progression (78.7±15.2 hours). Once the threshold was passed, toxin levels rose rapidly in both groups to the terminal stage. The time from threshold to terminal was rapid and similar; 20.8±7.4 hours for fast and 19.9±7.5 hours for slow progression. The three toxemic phases were aligned with the three clinical stages of anthrax for fast and slow progression which showed that anthrax progression is toxin- rather than time-dependent. This first comprehensive evaluation of anthrax toxins provides new insights into disease progression.


Assuntos
Antraz , Bacillus anthracis , Infecções Respiratórias , Animais , Antígenos de Bactérias , Macaca mulatta
2.
Clin Infect Dis ; 75(Suppl 3): S364-S372, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36251557

RESUMO

This report describes a 49-year-old male construction worker who acquired a Bacillus anthracis infection after working on a sheep farm. He experienced a severe respiratory infection, septic shock, and hemorrhagic meningoencephalitis with severe intracranial hypertension. After several weeks with multiple organ dysfunction syndrome, he responded favorably to antibiotic treatment. Three weeks into his hospitalization, an intracranial hemorrhage and cerebral edema led to an abrupt deterioration in his neurological status. A single dose of raxibacumab was added to his antimicrobial regimen on hospital day 27. His overall status, both clinical and radiographic, improved within a few days. He was discharged 2 months after admission and appears to have fully recovered.


Assuntos
Antraz , Bacillus anthracis , Meningite , Animais , Antraz/complicações , Antraz/tratamento farmacológico , Antibacterianos/uso terapêutico , Masculino , Meningite/tratamento farmacológico , Infecções Respiratórias , Ovinos
3.
Clin Infect Dis ; 75(Suppl 3): S354-S363, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36251561

RESUMO

Bacillus anthracis has traditionally been considered the etiologic agent of anthrax. However, anthrax-like illness has been documented in welders and other metal workers infected with Bacillus cereus group spp. harboring pXO1 virulence genes that produce anthrax toxins. We present 2 recent cases of severe pneumonia in welders with B. cereus group infections and discuss potential risk factors for infection and treatment options, including antitoxin.


Assuntos
Antraz , Antitoxinas , Bacillus anthracis , Antraz/diagnóstico , Antraz/tratamento farmacológico , Bacillus anthracis/genética , Bacillus cereus/genética , Humanos , Ferreiros , Plasmídeos
4.
J Immunol ; 204(5): 1263-1273, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31932496

RESUMO

The poly-γ-glutamic acid (PGA) capsule produced by Bacillus anthracis is composed entirely of d-isomer glutamic acid, whereas nonpathogenic Bacillus species produce mixed d-, l-isomer PGAs. To determine if B. anthracis PGA confers a pathogenic advantage over other PGAs, we compared the responses of human innate immune cells to B. anthracis PGA and PGAs from nonpathogenic B. subtilis subsp. chungkookjang and B. licheniformis Monocytes and immature dendritic cells (iDCs) responded differentially to the PGAs, with B. anthracis PGA being least stimulatory and B. licheniformis PGA most stimulatory. All three elicited IL-8 and IL-6 from monocytes, but B. subtilis PGA also elicited IL-10 and TNF-α, whereas B. licheniformis PGA elicited all those plus IL-1ß. Similarly, all three PGAs elicited IL-8 from iDCs, but B. subtilis PGA also elicited IL-6, and B. licheniformis PGA elicited those plus IL-12p70, IL-10, IL-1ß, and TNF-α. Only B. licheniformis PGA induced dendritic cell maturation. TLR assays also yielded differential results. B. subtilis PGA and B. licheniformis PGA both elicited more TLR2 signal than B. anthracis PGA, but only responses to B. subtilis PGA were affected by a TLR6 neutralizing Ab. B. licheniformis PGA elicited more TLR4 signal than B. anthracis PGA, whereas B. subtilis PGA elicited none. B. anthracis PGA persisted longer in high m.w. form in monocyte and iDC cultures than the other PGAs. Reducing the m.w. of B. anthracis PGA reduced monocytes' cytokine responses. We conclude that B. anthracis PGA is recognized less effectively by innate immune cells than PGAs from nonpathogenic Bacillus species, resulting in failure to induce a robust host response, which may contribute to anthrax pathogenesis.


Assuntos
Bacillus anthracis/imunologia , Bacillus licheniformis/imunologia , Bacillus subtilis/imunologia , Células Dendríticas/imunologia , Imunidade Inata , Macrófagos/imunologia , Monócitos/imunologia , Ácido Poliglutâmico/imunologia , Citocinas/imunologia , Feminino , Humanos , Masculino
5.
J Infect Dis ; 223(2): 319-325, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32697310

RESUMO

BACKGROUND: Inhalational anthrax is rare and clinical experience limited. Expert guidelines recommend treatment with combination antibiotics including protein synthesis-inhibitors to decrease toxin production and increase survival, although evidence is lacking. METHODS: Rhesus macaques exposed to an aerosol of Bacillus anthracis spores were treated with ciprofloxacin, clindamycin, or ciprofloxacin + clindamycin after becoming bacteremic. Circulating anthrax lethal factor and protective antigen were quantitated pretreatment and 1.5 and 12 hours after beginning antibiotics. RESULTS: In the clindamycin group, 8 of 11 (73%) survived demonstrating its efficacy for the first time in inhalational anthrax, compared to 9 of 9 (100%) with ciprofloxacin, and 8 of 11 (73%) with ciprofloxacin + clindamycin. These differences were not statistically significant. There were no significant differences between groups in lethal factor or protective antigen levels from pretreatment to 12 hours after starting antibiotics. Animals that died after clindamycin had a greater incidence of meningitis compared to those given ciprofloxacin or ciprofloxacin + clindamycin, but numbers of animals were very low and no definitive conclusion could be reached. CONCLUSION: Treatment of inhalational anthrax with clindamycin was as effective as ciprofloxacin in the nonhuman primate. Addition of clindamycin to ciprofloxacin did not enhance reduction of circulating toxin levels.


Assuntos
Antraz/sangue , Antraz/prevenção & controle , Antígenos de Bactérias/sangue , Bacillus anthracis/efeitos dos fármacos , Bacillus anthracis/fisiologia , Toxinas Bacterianas/sangue , Ciprofloxacina/uso terapêutico , Clindamicina/uso terapêutico , Infecções Respiratórias/sangue , Infecções Respiratórias/prevenção & controle , Animais , Antraz/microbiologia , Antraz/mortalidade , Antibacterianos/uso terapêutico , Biomarcadores , Ciprofloxacina/farmacologia , Clindamicina/farmacologia , Modelos Animais de Doenças , Quimioterapia Combinada , Macaca mulatta , Prognóstico , Infecções Respiratórias/microbiologia , Infecções Respiratórias/mortalidade , Resultado do Tratamento
7.
Analyst ; 144(7): 2264-2274, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30810119

RESUMO

Anthrax protective antigen (83 kDa, PA83) is an essential component of two major binary toxins produced by Bacillus anthracis, lethal toxin (LTx) and edema toxin (ETx). During infection, LTx and ETx contribute to immune collapse, endothelial dysfunction, hemorrhage and high mortality. Following protease cleavage on cell receptors or in circulation, the 20 kDa (PA20) N-terminus is released, activating the 63 kDa (PA63) form which binds lethal factor (LF) and edema factor (EF), facilitating their entry into their cellular targets. Several ELISA-based PA methods previously developed are primarily qualitative or semi-quantitative. Here, we combined protein immunocapture, tryptic digestion and isotope dilution liquid chromatography-mass spectrometry (LC-MS/MS), to develop a highly selective and sensitive method for detection and accurate quantification of total-PA (PA83 + PA63) and PA83. Two tryptic peptides in the 63 kDa region measure total-PA and three in the 20 kDa region measure PA83 alone. Detection limits range from 1.3-2.9 ng mL-1 PA in 100 µL of plasma. Spiked recovery experiments with combinations of PA83, PA63, LF and EF in plasma showed that PA63 and PA83 were quantified accurately against the PA83 standard and that LF and EF did not interfere with accuracy. Applied to a study of inhalation anthrax in rhesus macaques, total-PA suggested triphasic kinetics, similar to that previously observed for LF and EF. This study is the first to report circulating PA83 in inhalation anthrax, typically at less than 4% of the levels of PA63, providing the first evidence that activated PA63 is the primary form of PA throughout infection.


Assuntos
Antígenos de Bactérias/sangue , Bacillus anthracis/imunologia , Toxinas Bacterianas/sangue , Imunoensaio/métodos , Limite de Detecção , Espectrometria de Massas , Animais , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/imunologia , Macaca mulatta
8.
Anal Bioanal Chem ; 411(12): 2493-2509, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30911800

RESUMO

Inhalation of Bacillus anthracis spores can cause a rapidly progressing fatal infection. B. anthracis secretes three protein toxins: lethal factor (LF), edema factor (EF), and protective antigen (PA). EF and LF may circulate as free or PA-bound forms. Both free EF (EF) and PA-bound-EF (ETx) have adenylyl cyclase activity converting ATP to cAMP. We developed an adenylyl cyclase activity-based method for detecting and quantifying total EF (EF+ETx) in plasma. The three-step method includes magnetic immunocapture with monoclonal antibodies, reaction with ATP generating cAMP, and quantification of cAMP by isotope-dilution HPLC-MS/MS. Total EF was quantified from 5PL regression of cAMP vs ETx concentration. The detection limit was 20 fg/mL (225 zeptomoles/mL for the 89 kDa protein). Relative standard deviations for controls with 0.3, 6.0, and 90 pg/mL were 11.7-16.6% with 91.2-99.5% accuracy. The method demonstrated 100% specificity in 238 human serum/plasma samples collected from unexposed healthy individuals, and 100% sensitivity in samples from 3 human and 5 rhesus macaques with inhalation anthrax. Analysis of EF in the rhesus macaques showed that it was detected earlier post-exposure than B. anthracis by culture and PCR. Similar to LF, the kinetics of EF over the course of infection were triphasic, with an initial rise (phase-1), decline (phase-2), and final rapid rise (phase-3). EF levels were ~ 2-4 orders of magnitude lower than LF during phase-1 and phase-2 and only ~ 6-fold lower at death/euthanasia. Analysis of EF improves early diagnosis and adds to our understanding of anthrax toxemia throughout infection. The LF/EF ratio may also indicate the stage of infection and need for advanced treatments.


Assuntos
Antraz/patologia , Antígenos de Bactérias/sangue , Bacillus anthracis/patogenicidade , Toxinas Bacterianas/sangue , Cromatografia Líquida de Alta Pressão/métodos , Infecções Respiratórias/patologia , Espectrometria de Massas em Tandem/métodos , Toxemia/patologia , Trifosfato de Adenosina/metabolismo , Animais , Antraz/sangue , Estudos de Casos e Controles , AMP Cíclico/biossíntese , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Humanos , Limite de Detecção , Macaca mulatta , Reação em Cadeia da Polimerase , Infecções Respiratórias/sangue , Toxemia/sangue , Toxemia/microbiologia
9.
Anal Biochem ; 543: 97-107, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29224733

RESUMO

Anthrax lethal factor (LF) is a zinc-dependent endoprotease and a critical virulence factor for Bacillus anthracis, the causative agent of anthrax. The mass spectrometry (MS) method for total-LF quantification includes three steps; 1) LF specific antibody capture/concentration, 2) LF-specific hydrolysis of a peptide substrate, and 3) detection and quantification of LF-cleaved peptides by isotope-dilution MALDI-TOF/MS. Recombinant LF spiked plasma was used for calibration and quality control (QC) materials. Specificity was 100% from analysis of serum and plasma from 383 non-infected humans, 31 rabbits, and 24 rhesus macaques. Sensitivity was 100% from 32 human clinical anthrax cases including infections by inhalation, ingestion, cutaneous and injection exposures and experimental infections for 29 rabbits and 24 rhesus macaques with inhalation anthrax. Robustness evaluation included sample storage, serum and plasma, antimicrobial and antitoxin effects and long-term performance. Data from 100 independent runs gave detection limits 0.01 ng/mL (111 amol/mL) for the 4-h method and 0.0027 ng/mL (30 amol/mL) for an alternate 20-h method. QC precision ranged from 7.7 to 14.8% coefficient of variation and accuracy from 0.2 to 9.8% error. The validated LF MS method provides sensitive quantification of anthrax total-LF using a robust high throughput platform for early diagnosis and evaluation of therapeutics during an anthrax emergency.


Assuntos
Antraz/diagnóstico , Antraz/tratamento farmacológico , Antígenos de Bactérias/análise , Bacillus anthracis/química , Toxinas Bacterianas/análise , Animais , Antibacterianos/farmacologia , Bacillus anthracis/efeitos dos fármacos , Calibragem , Humanos , Macaca mulatta , Controle de Qualidade , Coelhos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
10.
Emerg Infect Dis ; 23(1): 56-65, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27983504

RESUMO

We studied anthrax immune globulin intravenous (AIG-IV) use from a 2009-2010 outbreak of Bacillus anthracis soft tissue infection in injection drug users in Scotland, UK, and we compared findings from 15 AIG-IV recipients with findings from 28 nonrecipients. Death rates did not differ significantly between recipients and nonrecipients (33% vs. 21%). However, whereas only 8 (27%) of 30 patients at low risk for death (admission sequential organ failure assessment score of 0-5) received AIG-IV, 7 (54%) of the 13 patients at high risk for death (sequential organ failure assessment score of 6-11) received treatment. AIG-IV recipients had surgery more often and, among survivors, had longer hospital stays than did nonrecipients. AIG-IV recipients were sicker than nonrecipients. This difference and the small number of higher risk patients confound assessment of AIG-IV effectiveness in this outbreak.


Assuntos
Antraz/tratamento farmacológico , Antibacterianos/uso terapêutico , Antitoxinas/uso terapêutico , Surtos de Doenças , Imunoglobulina G/uso terapêutico , Infecções dos Tecidos Moles/tratamento farmacológico , Abuso de Substâncias por Via Intravenosa/tratamento farmacológico , Adulto , Antraz/epidemiologia , Antraz/microbiologia , Antraz/mortalidade , Bacillus anthracis/patogenicidade , Bacillus anthracis/fisiologia , Quimioterapia Combinada , Usuários de Drogas , Feminino , Heroína/administração & dosagem , Humanos , Masculino , Escócia/epidemiologia , Infecções dos Tecidos Moles/epidemiologia , Infecções dos Tecidos Moles/microbiologia , Infecções dos Tecidos Moles/mortalidade , Abuso de Substâncias por Via Intravenosa/epidemiologia , Abuso de Substâncias por Via Intravenosa/microbiologia , Abuso de Substâncias por Via Intravenosa/mortalidade , Análise de Sobrevida , Resultado do Tratamento
11.
Cell Microbiol ; 16(4): 504-18, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24152301

RESUMO

Polymorphonuclear leucocytes (PMNs) play a protective role during Bacillus anthracis infection. However, B. anthracis is able to subvert the PMN response effectively as evidenced by the high mortality rates of anthrax. One major virulence factor produced by B. anthracis, lethal toxin (LT), is necessary for dissemination in the BSL2 model of mouse infection. While human and mouse PMNs kill vegetative B. anthracis, short in vitro half-lives of PMNs have made it difficult to determine how or if LT alters their bactericidal function. Additionally, the role of LT intoxication on PMN's ability to migrate to inflammatory signals remains controversial. LF concentrations in both serum and major organs were determined from mice infected with B. anthracis Sterne strain at defined stages of infection to guide subsequent administration of purified toxin. Bactericidal activity of PMNs assessed using ex vivo cell culture assays showed significant defects in killing B. anthracis. In vivo PMN recruitment to inflammatory stimuli was significantly impaired at 24 h as assessed by real-time analysis of light-producing PMNs within the mouse. The observations described above suggest that LT serves dual functions; it both attenuates accumulation of PMNs at sites of inflammation and impairs PMNs bactericidal activity against vegetative B. anthracis.


Assuntos
Antígenos de Bactérias/imunologia , Antígenos de Bactérias/toxicidade , Bacillus anthracis/imunologia , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/toxicidade , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Estruturas Animais/química , Animais , Antraz/imunologia , Antraz/microbiologia , Antígenos de Bactérias/análise , Toxinas Bacterianas/análise , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Soro/química
12.
Anal Bioanal Chem ; 407(10): 2847-58, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25673244

RESUMO

Inhalation anthrax has a rapid progression and high fatality rate. Pathology and death from inhalation of Bacillus anthracis spores are attributed to the actions of secreted protein toxins. Protective antigen (PA) binds and imports the catalytic component lethal factor (LF), a zinc endoprotease, and edema factor (EF), an adenylyl cyclase, into susceptible cells. PA-LF is termed lethal toxin (LTx) and PA-EF, edema toxin. As the universal transporter for both toxins, PA is an important target for vaccination and immunotherapeutic intervention. However, its quantification has been limited to methods of relatively low analytic sensitivity. Quantification of LTx may be more clinically relevant than LF or PA alone because LTx is the toxic form that acts on cells. A method was developed for LTx-specific quantification in plasma using anti-PA IgG magnetic immunoprecipitation of PA and quantification of LF activity that co-purified with PA. The method was fast (<4 h total time to detection), sensitive at 0.033 ng/mL LTx in plasma for the fast analysis (0.0075 ng/mL LTx in plasma for an 18 h reaction), precise (6.3-9.9% coefficient of variation), and accurate (0.1-12.7%error; n ≥ 25). Diagnostic sensitivity was 100% (n = 27 animal/clinical cases). Diagnostic specificity was 100% (n = 141). LTx was detected post-antibiotic treatment in 6/6 treated rhesus macaques and 3/3 clinical cases of inhalation anthrax and as long as 8 days post-treatment. Over the course of infection in two rhesus macaques, LTx was first detected at 0.101 and 0.237 ng/mL at 36 h post-exposure and increased to 1147 and 12,107 ng/mL in late-stage anthrax. This demonstrated the importance of LTx as a diagnostic and therapeutic target. This method provides a sensitive, accurate tool for anthrax toxin detection and evaluation of PA-directed therapeutics.


Assuntos
Antraz/diagnóstico , Antígenos de Bactérias/análise , Toxinas Bacterianas/análise , Infecções Respiratórias/diagnóstico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Sequência de Aminoácidos , Animais , Antraz/tratamento farmacológico , Antibacterianos/uso terapêutico , Especificidade de Anticorpos , Antígenos de Bactérias/sangue , Antígenos de Bactérias/imunologia , Toxinas Bacterianas/sangue , Toxinas Bacterianas/imunologia , Humanos , Imunoprecipitação/métodos , Macaca mulatta , Magnetismo , Dados de Sequência Molecular , Reprodutibilidade dos Testes , Infecções Respiratórias/tratamento farmacológico , Sensibilidade e Especificidade , Fatores de Tempo
14.
PLoS Pathog ; 6(11): e1001199, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21124994

RESUMO

Chemokines have been found to exert direct, defensin-like antimicrobial activity in vitro, suggesting that, in addition to orchestrating cellular accumulation and activation, chemokines may contribute directly to the innate host response against infection. No observations have been made, however, demonstrating direct chemokine-mediated promotion of host defense in vivo. Here, we show that the murine interferon-inducible CXC chemokines CXCL9, CXCL10, and CXCL11 each exert direct antimicrobial effects in vitro against Bacillus anthracis Sterne strain spores and bacilli including disruptions in spore germination and marked reductions in spore and bacilli viability as assessed using CFU determination and a fluorometric assay of metabolic activity. Similar chemokine-mediated antimicrobial activity was also observed against fully virulent Ames strain spores and encapsulated bacilli. Moreover, antibody-mediated neutralization of these CXC chemokines in vivo was found to significantly increase host susceptibility to pulmonary B. anthracis infection in a murine model of inhalational anthrax with disease progression characterized by systemic bacterial dissemination, toxemia, and host death. Neutralization of the shared chemokine receptor CXCR3, responsible for mediating cellular recruitment in response to CXCL9, CXCL10, and CXCL11, was not found to increase host susceptibility to inhalational anthrax. Taken together, our data demonstrate a novel, receptor-independent antimicrobial role for the interferon-inducible CXC chemokines in pulmonary innate immunity in vivo. These data also support an immunomodulatory approach for effectively treating and/or preventing pulmonary B. anthracis infection, as well as infections caused by pathogenic and potentially, multi-drug resistant bacteria including other spore-forming organisms.


Assuntos
Antraz/imunologia , Bacillus anthracis/efeitos dos fármacos , Quimiocina CXCL10/imunologia , Quimiocina CXCL11/imunologia , Quimiocina CXCL9/imunologia , Modelos Animais de Doenças , Interferons/farmacologia , Administração por Inalação , Animais , Antraz/microbiologia , Antivirais/farmacologia , Bacillus anthracis/patogenicidade , Feminino , Luminescência , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esporos Bacterianos/imunologia
15.
J Infect Dis ; 204(9): 1321-7, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21908727

RESUMO

Cutaneous anthrax outbreaks occurred in Bangladesh from August to October 2009. As part of the epidemiological response and to confirm anthrax diagnoses, serum samples were collected from suspected case patients with observed cutaneous lesions. Anthrax lethal factor (LF), anti-protective antigen (anti-PA) immunoglobulin G (IgG), and anthrax lethal toxin neutralization activity (TNA) levels were determined in acute and convalescent serum of 26 case patients with suspected cutaneous anthrax from the first and largest of these outbreaks. LF (0.005-1.264 ng/mL) was detected in acute serum from 18 of 26 individuals. Anti-PA IgG and TNA were detected in sera from the same 18 individuals and ranged from 10.0 to 679.5 µg/mL and 27 to 593 units, respectively. Seroconversion to serum anti-PA and TNA was found only in case patients with measurable toxemia. This is the first report of quantitative analysis of serum LF in cutaneous anthrax and the first to associate acute stage toxemia with subsequent antitoxin antibody responses.


Assuntos
Antraz/epidemiologia , Antraz/imunologia , Antígenos de Bactérias/imunologia , Antitoxinas/sangue , Toxinas Bacterianas/imunologia , Surtos de Doenças , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Neutralizantes/sangue , Bangladesh/epidemiologia , Humanos , Imunoglobulina G/sangue , Dermatopatias Bacterianas
16.
Anal Chem ; 83(5): 1760-5, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21302970

RESUMO

Diagnosing and treating anthrax at the earliest stage of disease is critical. We developed a method to diagnose anthrax at early stages of infection by detecting anthrax lethal factor (LF) at the attomol/mL level in plasma or serum. This method uses antibody capture and quantification of LF endoproteinase activity by isotope dilution matrix-assisted laser-desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS). Many public health laboratories do not use MALDI-TOF-MS; thus, we have adapted the LF method for detection by electrospray ionization (ESI) tandem MS (MS/MS), which allowed comparison of both MS platforms for LF quantification. Calibration curves were linear from 0.05-2.5 ng/mL when measured after 2 h and from 0.005-1.0 ng/mL after 18 h incubation time. The limit of detection was 0.005 ng/mL using a 200 µL sample. The coefficient of variation for quality control samples was 6-12% for both MS platforms. Samples used to perform cross-validation included 158 serum samples from a study in rabbits exposed to anthrax spores by inhalation. Some were treated with anthrax immune globulin before exposure. Concentrations measured by ESI-MS/MS matched those by MALDI-TOF-MS with p = 0.99 (r(2) = 0.997) and -0.25% mean relative difference (±9% standard deviation). This study shows that isotope dilution MALDI-TOF-MS is a robust and precise quantitative MS platform.


Assuntos
Antígenos de Bactérias/química , Toxinas Bacterianas/química , Cromatografia Líquida de Alta Pressão/métodos , Endopeptidases/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Animais , Calibragem , Dados de Sequência Molecular , Coelhos
17.
Molecules ; 16(3): 2391-413, 2011 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-21403598

RESUMO

Matrix-assisted laser-desorption time-of-flight (MALDI-TOF) mass spectrometry (MS) is a valuable high-throughput tool for peptide analysis. Liquid chromatography electrospray ionization (LC-ESI) tandem-MS provides sensitive and specific quantification of small molecules and peptides. The high analytic power of MS coupled with high-specificity substrates is ideally suited for detection and quantification of bacterial enzymatic activities. As specific examples of the MS applications in disease diagnosis and select agent detection, we describe recent advances in the analyses of two high profile protein toxin groups, the Bacillus anthracis toxins and the Clostridium botulinum neurotoxins. The two binary toxins produced by B. anthracis consist of protective antigen (PA) which combines with lethal factor (LF) and edema factor (EF), forming lethal toxin and edema toxin respectively. LF is a zinc-dependent endoprotease which hydrolyzes specific proteins involved in inflammation and immunity. EF is an adenylyl cyclase which converts ATP to cyclic-AMP. Toxin-specific enzyme activity for a strategically designed substrate, amplifies reaction products which are detected by MALDI-TOF-MS and LC-ESI-MS/MS. Pre-concentration/purification with toxin specific monoclonal antibodies provides additional specificity. These combined technologies have achieved high specificity, ultrasensitive detection and quantification of the anthrax toxins. We also describe potential applications to diseases of high public health impact, including Clostridium difficile glucosylating toxins and the Bordetella pertussis adenylyl cyclase.


Assuntos
Bacillus anthracis/química , Proteínas de Bactérias/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Limite de Detecção , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
18.
Infect Immun ; 77(8): 3432-41, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19506008

RESUMO

Systemic anthrax manifests as toxemia, rapidly disseminating septicemia, immune collapse, and death. Virulence factors include the anti-phagocytic gamma-linked poly-d-glutamic acid (PGA) capsule and two binary toxins, complexes of protective antigen (PA) with lethal factor (LF) and edema factor. We report the characterization of LF, PA, and PGA levels during the course of inhalation anthrax in five rhesus macaques. We describe bacteremia, blood differentials, and detection of the PA gene (pagA) by PCR analysis of the blood as confirmation of infection. For four of five animals tested, LF exhibited a triphasic kinetic profile. LF levels (mean +/- standard error [SE] between animals) were low at 24 h postchallenge (0.03 +/- 1.82 ng/ml), increased at 48 h to 39.53 +/- 0.12 ng/ml (phase 1), declined at 72 h to 13.31 +/- 0.24 ng/ml (phase 2), and increased at 96 h (82.78 +/- 2.01 ng/ml) and 120 h (185.12 +/- 5.68 ng/ml; phase 3). The fifth animal had an extended phase 2. PGA levels were triphasic; they were nondetectable at 24 h, increased at 48 h (2,037 +/- 2 ng/ml), declined at 72 h (14 +/- 0.2 ng/ml), and then increased at 96 h (3,401 +/- 8 ng/ml) and 120 h (6,004 +/- 187 ng/ml). Bacteremia was also triphasic: positive at 48 h, negative at 72 h, and positive at euthanasia. Blood neutrophils increased from preexposure (34.4% +/- 0.13%) to 48 h (75.6% +/- 0.08%) and declined at 72 h (62.4% +/- 0.05%). The 72-h declines may establish a "go/no go" turning point in infection, after which systemic bacteremia ensues and the host's condition deteriorates. This study emphasizes the value of LF detection as a tool for early diagnosis of inhalation anthrax before the onset of fulminant systemic infection.


Assuntos
Antraz/patologia , Antígenos de Bactérias/sangue , Toxinas Bacterianas/sangue , Ácido Poliglutâmico/sangue , Animais , Antígenos de Bactérias/genética , Toxinas Bacterianas/genética , DNA Bacteriano/sangue , Feminino , Inalação , Contagem de Leucócitos , Macaca mulatta , Neutrófilos/imunologia , Reação em Cadeia da Polimerase/métodos
20.
PLoS One ; 11(6): e0156987, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27257909

RESUMO

Bacillus cereus isolates have been described harboring Bacillus anthracis toxin genes, most notably B. cereus G9241, and capable of causing severe and fatal pneumonias. This report describes the characterization of a B. cereus isolate, BcFL2013, associated with a naturally occurring cutaneous lesion resembling an anthrax eschar. Similar to G9241, BcFL2013 is positive for the B. anthracis pXO1 toxin genes, has a multi-locus sequence type of 78, and a pagA sequence type of 9. Whole genome sequencing confirms the similarity to G9241. In addition to the chromosome having an average nucleotide identity of 99.98% when compared to G9241, BcFL2013 harbors three plasmids with varying homology to the G9241 plasmids (pBCXO1, pBC210 and pBFH_1). This is also the first report to include serologic testing of patient specimens associated with this type of B. cereus infection which resulted in the detection of anthrax lethal factor toxemia, a quantifiable serum antibody response to protective antigen (PA), and lethal toxin neutralization activity.


Assuntos
Antraz/metabolismo , Antraz/microbiologia , Antígenos de Bactérias/metabolismo , Bacillus cereus/metabolismo , Bacillus cereus/patogenicidade , Toxinas Bacterianas/metabolismo , Idoso , Antraz/patologia , Bacillus cereus/isolamento & purificação , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA