RESUMO
Whey proteins in milk are globular proteins that can be converted into fibrils to enhance functional properties such gelation, emulsification, and foaming. A model fibrillated milk protein concentrate (MPC) was developed by mixing micellar casein concentrate (MCC) with fibrillated milk whey proteins. Similarly, a control model MPC was obtained by mixing MCC with milk whey proteins. The resulting fibrillated model MPC and control model MPC contained 5% protein and a ratio of casein to whey proteins similar to milk. The objective of the current study was to understand the rheological characteristics of fibrillated and control model MPC during acid gelation, using Förster resonance energy transfer (FRET) to assess small amplitude oscillation and casein-whey protein interaction. The results from the FRET index images showed greater interactions between caseins and whey proteins in fibrillated model MPC compared with the moderate and uniform interactions in control model MPC gels. Rheological study showed that the maximum storage modulus of acid gel of fibrillated model MPC was 546.9 ± 15.5 Pa, which was significantly higher than acid gel made from control model MPC (336.9 ± 11.3 Pa), indicating that fibrillated model MPC produced a firmer gel. Therefore, it can be concluded that acid gel produced from fibrillated model MPC was stronger than control model MPC. Selective fibrillation of the whey protein fraction in MPC can be used to improve gelation characteristics of acid gel type products.
Assuntos
Caseínas , Proteínas do Leite , Animais , Géis , Concentração de Íons de Hidrogênio , Micelas , Leite , Proteínas do Soro do LeiteRESUMO
Glucosylceramides (GlcCer), glucose-conjugated sphingolipids, are major components of the endomembrane system and plasma membrane in most eukaryotic cells. Yet the quantitative significance and cellular functions of GlcCer are not well characterized in plants and other multi-organ eukaryotes. To address this, we examined Arabidopsis lines that were lacking or deficient in GlcCer by insertional disruption or by RNA interference (RNAi) suppression of the single gene for GlcCer synthase (GCS, At2g19880), the enzyme that catalyzes GlcCer synthesis. Null mutants for GCS (designated 'gcs-1') were viable as seedlings, albeit strongly reduced in size, and failed to develop beyond the seedling stage. Heterozygous plants harboring the insertion allele exhibited reduced transmission through the male gametophyte. Undifferentiated calli generated from gcs-1 seedlings and lacking GlcCer proliferated in a manner similar to calli from wild-type plants. However, gcs-1 calli, in contrast to wild-type calli, were unable to develop organs on differentiation media. Consistent with a role for GlcCer in organ-specific cell differentiation, calli from gcs-1 mutants formed roots and leaves on media supplemented with the glucosylated sphingosine glucopsychosine, which was readily converted to GlcCer independent of GCS. Underlying these phenotypes, gcs-1 cells had altered Golgi morphology and fewer cisternae per Golgi apparatus relative to wild-type cells, indicative of protein trafficking defects. Despite seedling lethality in the null mutant, GCS RNAi suppression lines with ≤2% of wild-type GlcCer levels were viable and fertile. Collectively, these results indicate that GlcCer are essential for cell-type differentiation and organogenesis, and plant cells produce amounts of GlcCer in excess of that required for normal development.
Assuntos
Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Diferenciação Celular , Glucosilceramidas/metabolismo , Arabidopsis/metabolismo , Sobrevivência Celular/fisiologiaRESUMO
During each molting cycle of insect development, synthesis of new cuticle occurs concurrently with the partial degradation of the overlying old exoskeleton. Protection of the newly synthesized cuticle from molting fluid enzymes has long been attributed to the presence of an impermeable envelope layer that was thought to serve as a physical barrier, preventing molting fluid enzymes from accessing the new cuticle and thereby ensuring selective degradation of only the old one. In this study, using the red flour beetle, Tribolium castaneum, as a model insect species, we show that an entirely different and unexpected mechanism accounts for the selective action of chitinases and possibly other molting enzymes. The molting fluid enzyme chitinase, which degrades the matrix polysaccharide chitin, is not excluded from the newly synthesized cuticle as previously assumed. Instead, the new cuticle is protected from chitinase action by the T. castaneum Knickkopf (TcKnk) protein. TcKnk colocalizes with chitin in the new cuticle and organizes it into laminae. Down-regulation of TcKnk results in chitinase-dependent loss of chitin, severe molting defects, and lethality at all developmental stages. The conservation of Knickkopf across insect, crustacean, and nematode taxa suggests that its critical roles in the laminar ordering and protection of exoskeletal chitin may be common to all chitinous invertebrates.
Assuntos
Quitina/metabolismo , Proteínas de Insetos/metabolismo , Tribolium/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Quitina Sintase/metabolismo , Quitinases/metabolismo , Primers do DNA/genética , Proteínas de Drosophila/genética , Matriz Extracelular/metabolismo , Genes de Insetos , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Dados de Sequência Molecular , Muda/genética , Muda/fisiologia , Filogenia , Interferência de RNA , Homologia de Sequência de Aminoácidos , Tribolium/genética , Tribolium/crescimento & desenvolvimentoRESUMO
Improved control of vector-borne diseases requires an understanding of the molecular factors that determine vector competence. Apoptosis has been shown to play a role in defense against viruses in insects and mammals. Although some observations suggest a correlation between apoptosis and resistance to arboviruses in mosquitoes, there is no direct evidence tying apoptosis to arbovirus vector competence. To determine whether apoptosis can influence arbovirus replication in mosquitoes, we manipulated apoptosis in Aedes aegypti mosquitoes by silencing the expression of genes that either positively or negatively regulate apoptosis. Silencing of the A. aegypti anti-apoptotic gene iap1 (Aeiap1) caused apoptosis in midgut epithelium, alterations in midgut morphology, and 60 to 70% mosquito mortality. Mortality induced by Aeiap1 silencing was rescued by cosilencing the initiator caspase gene Aedronc, indicating that the mortality was due to apoptosis. When mosquitoes which had been injected with Aeiap1 double-stranded RNA (dsRNA) were orally infected with Sindbis virus (SINV), increased midgut infection and virus dissemination to other organs were observed. This increase in virus infection may have been due to the effects of widespread apoptosis on infection barriers or innate immunity. In contrast, silencing the expression of Aedronc, which would be expected to inhibit apoptosis, reduced SINV midgut infection and virus dissemination. Thus, our data suggest that some level of caspase activity and/or apoptosis may be necessary for efficient virus replication and dissemination in mosquitoes. This is the first study to directly test the roles of apoptosis and caspases in determining mosquito vector competence for arboviruses.
Assuntos
Aedes/citologia , Aedes/virologia , Apoptose , Insetos Vetores/citologia , Sindbis virus/fisiologia , Aedes/genética , Aedes/metabolismo , Animais , Inativação Gênica , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos Vetores/genética , Insetos Vetores/metabolismo , Insetos Vetores/virologia , Replicação ViralRESUMO
PURPOSE: To investigate the development and mineralization of avian scleral ossicles using fluorescence microscopy in combination with field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS). METHODS: The anterior halves of whole eyeballs from chickens on embryonic (E) days E10 to E21 and Japanese quail on embryonic days E8 to E17 were fixed in 100% methanol for 1 min, stained with Giemsa solution for 5 min, destained with distilled water for 30 min, and then viewed by epifluorescence. Propidium iodide (PI) was used to detect the nuclei of osteocytes in scleral ossicles. FESEM and EDS were then used to show areas of mineralization and to identify differences in the elemental composition of different regions of the ossicles. RESULTS: Using Giemsa as a fluorescence stain, it was possible to observe the detailed morphology and development of both chicken and quail scleral ossicles. In chickens, bone microporosities first became visible at E15. Each microporosity contained a single nucleus, likely that of an osteocyte. The amount of carbon in ossicles steadily decreased during embryogenesis and post-hatching, while the concentration of oxygen showed a distinct increase over this time period. Calcium and phosphate levels in the ossicles increased gradually during embryonic and post-hatching stages. CONCLUSIONS: A novel approach to study the development and mineralization of avian scleral ossicles during embryogenesis is presented. This methodology was validated by studying two different species, both important models for avian developmental research.
Assuntos
Calcificação Fisiológica , Esclera/embriologia , Animais , Corantes Azur , Embrião de Galinha/embriologia , Embrião de Galinha/fisiologia , Coturnix/embriologia , Coturnix/fisiologia , Corantes Fluorescentes , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Modelos Animais , Esclera/fisiologia , Esclera/ultraestrutura , Especificidade da Espécie , Espectrometria por Raios XRESUMO
Woody breast (WB) is a myopathy observed in broiler Pectoralis major (PM) characterized by its tough and rubbery texture with greater level of calcium content. The objective of this study was to investigate the functionality/integrity of WB sarcoplasmic reticulum (SR), which may contribute to the elevated calcium content observed in WB and other factors that may influence WB texture. Fourteen Ross line broiler PM [7 severe WB and 7 normal (N)] were selected, packaged, and frozen at -20°C at 8 h postmortem from a commercial processing plant. Samples were used to measure pH, sarcomere length, proteolysis, calpain activity, collagenase activity, collagen content, collagen crosslinks density, and connective tissue peak transitional temperature. Exudate was also collected from each sample to evaluate free calcium concentration. The SR fraction of the samples was separated and utilized for proteomic and lipidomic analysis. The WB PM had a higher pH, shorter sarcomeres, lower % of intact troponin-T, more autolyzed µ/m calpain, more activated collagenase, greater collagen content, greater mature collagen crosslinks density, and higher connective tissue peak transitional temperature than the N PM (p ≤ 0.05). Exudate from WB PM had higher levels of free calcium than those from N PM (p < 0.05). Proteomics data revealed an upregulation of calcium transport proteins and a downregulation of proteins responsible for calcium release (p < 0.05) in WB SR. Interestingly, there was an upregulation of phospholipase A2 (PLA2), and cholinesterase exhibited a 7.6-fold increase in WB SR (p < 0.01). Lipidomics data revealed WB SR had less relative % of phosphatidylcholine (PC) and more lysophosphatidylcholine (LPC; p < 0.05). The results indicated that upregulation of calcium transport proteins and downregulation of calcium-release proteins in WB SR may be the muscle's attempt to regulate this proposed excessive signaling of calcium release due to multiple factors, such as upregulation of PLA2 resulting in PC hydrolysis and presence of cholinesterase inhibitors in the system prolonging action potential. In addition, the textural abnormality of WB may be the combined effects of shorter sarcomere length and more collagen with greater crosslink density being deposited in the broiler PM.
RESUMO
In most mammals, glucokinase (GK) acts as a hepatic "glucose sensor" that permits hepatic metabolism to respond appropriately to changes in plasma glucose concentrations. GK activity is potently regulated by the glucokinase regulatory protein (GKRP), which is encoded by the GCKR gene. GKRP binds GK in the nucleus and inhibits its activity. GK becomes active when it is released from GKRP and translocates to the cytosol. Low glucokinase (GK) activity is reported to be a principal feature of feline hepatic carbohydrate metabolism but the molecular pathways that regulate GK activity are not known. This study examined the hypothesis that species-specific differences in GKRP expression parallel the low GK activity observed in feline liver. Hepatic GKRP expression was examined using RT-PCR, immunoblot, and confocal immunomicroscopy. The results show that the GCKR gene is present in the feline genome but GCKR mRNA and the GKRP protein were absent in feline liver. The lack of GKRP expression in feline liver indicates that the low GK activity cannot be the result of GKRP-mediated inhibition of the GK enzyme. However, the absence of the permissive effects of GCKR expression on GK expression and activity may contribute to reduced GK enzyme activity in feline liver. The study results show that the cat is a natural model for GCKR knockout and may be useful to study regulation of GCKR expression and its role in hepatic glucose-sensing and carbohydrate metabolism.
Assuntos
Proteínas de Transporte/biossíntese , Gatos/metabolismo , Glucoquinase/metabolismo , Fígado/metabolismo , Animais , Proteínas de Transporte/genética , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Immunoblotting/veterinária , Fígado/enzimologia , Microscopia Confocal/veterinária , RNA/química , RNA/genética , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterináriaRESUMO
Nine grain sorghum cultivars with a broad range of ethanol fermentation efficiencies were selected to characterize the changes in sorghum protein in digestibility, solubility, and microstructure during mashing and to relate those changes to ethanol fermentation quality of sorghum. Mashing reduced in vitro protein digestibility considerably, and a large amount of polymers cross-linked by disulfide bonds were developed during mashing. As a marker of cross-linking, protein digestibility of the original samples was highly related to conversion efficiency. gamma-Kafirin (%) neither correlated to ethanol yield nor conversion efficiency significantly. Solubility of proteins in an alkaline borate buffer in conjunction with SDS decreased substantially after mashing. Solubility and the SE-HPLC area of proteins extracted from mashed samples were highly correlated with ethanol fermentation. Ethanol yield increased and conversion efficiency improved notably with the increase of extracted proteins from mashed samples. SE-HPLC total area could be used as an indicator to predict ethanol fermentation. CFLSM images proved that sorghum proteins tended to form highly extended, strong web-like microstructures during mashing. The degree of protein cross-linking differed among samples, and more open microstructures were observed in samples with higher conversion efficiencies. The web-like protein matrix was found to hold not only starch granules but also some oligosaccharides or polysaccharides inside. The formation of web-like microstructures because of cross-linking reduced conversion efficiency.
Assuntos
Etanol/metabolismo , Fermentação , Manipulação de Alimentos/métodos , Proteínas de Plantas/análise , Sorghum/química , Cromatografia Líquida de Alta Pressão , Glucose/análise , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Solubilidade , Amido/análiseRESUMO
This study was conducted to improve the quality and theoretical understanding of gluten-free sorghum bread. The addition of 2% hydroxypropyl methylcellulose improved bread based on 105% water, 70% sorghum flour, and 30% potato starch. Nevertheless, a flat top and tendency toward a hole in the crumb remained. Sourdough fermentation of the total sorghum flour eliminated these problems. Size-exclusion high-performance liquid chromatography demonstrated that during sourdough fermentation, proteins from the dough liquid were degraded to peptides smaller than kafirin monomers (<19 kDa). Laser scanning confocal microscopy showed aggregated protein in bread crumb without sourdough fermentation, whereas with sourdough fermentation, only small isolated patches of protein bodies embedded in matrix protein remained. In oscillatory temperature sweeps, sourdough fermentation caused a significantly higher resistance to deformation (|G*|) after gelatinization of the above batter relative to batters without sourdough. Results suggest that a strong starch gel, without interference of aggregated protein, is desirable for this type of bread.
Assuntos
Pão/análise , Fermentação , Glutens/análise , Sorghum/química , Controle de Qualidade , Reologia , Sementes/químicaRESUMO
Control of salivary secretion in ticks involves autocrine dopamine activating two dopamine receptors: D1 and Invertebrate-specific D1-like dopamine receptors. In this study, we investigated Na/K-ATPase as an important component of the secretory process. Immunoreactivity for Na/K-ATPase revealed basal infolding of lamellate cells in type-I, abluminal interstitial (epithelial) cells in type-II, and labyrinth-like infolding structures opening towards the lumen in type-III acini. Ouabain (10 µmol l(-1)), a specific inhibitor of Na/K-ATPase, abolished dopamine-induced salivary secretion by suppressing fluid transport in type III acini. At 1 µmol l(-1), ouabain, the secreted saliva was hyperosmotic. This suggests that ouabain also inhibits an ion resorptive function of Na/K-ATPase in the type I acini. Dopamine/ouabain were not involved in activation of protein secretion, while dopamine-induced saliva contained constitutively basal level of protein. We hypothesize that the dopamine-dependent primary saliva formation, mediated by Na/K-ATPase in type III and type II acini, is followed by a dopamine-independent resorptive function of Na/K-ATPase in type I acini located in the proximal end of the salivary duct.
Assuntos
Dopamina/metabolismo , Ixodes/fisiologia , Receptores de Dopamina D1/metabolismo , Saliva/metabolismo , Salivação/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Células Acinares/metabolismo , Animais , Inibidores Enzimáticos/farmacologia , Células Epiteliais/metabolismo , Ouabaína/farmacologia , Ductos Salivares/fisiologia , Salivação/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidoresRESUMO
PURPOSE: Using a web-based tool to screen the human proteome for potential mimecan/osteoglycin interacting proteins, we found that the leucine-rich B7 protein may have functional associations with several small leucine-rich proteoglycans (SLRP), including mimecan. The purpose of this study was to determine the expression of leucine-rich B7 protein in human eye tissues and its subcellular localization in MG-63 cells. METHODS: Primers were synthesized to amplify the two known differentially spliced B7 mRNA transcripts. Reverse transcription-polymerase chain reaction (RT-PCR) amplification was used to determine the expression of B7 mRNAs in human ocular and nonocular tissues. A rabbit anti-human B7 antibody was generated that specifically immunostained B7 proteins. The expression of B7 proteins in the human eye was determined by immunohistochemistry (IHC). Intracellular localization of leucine-rich B7 and mimecan proteins were determined using transient co-transfections, cell immunostaining, and laser scanning confocal microscopy. RESULTS: RT-PCR analysis showed moderate expression of B7, transcript variant 2, in human cornea, iris, sclera, and retina. In contrast, B7, transcript variant 1, was strongly expressed only in the cornea. The two B7 mRNAs were highly expressed in human brain, blood, peripheral mononuclear cells, and other human tissues. By IHC, immunostaining for leucine-rich B7 protein was found in epithelial and endothelial layers of the cornea, epithelial and fiber cells of the lens, in sclera, and in the rod and cone layer of the retina of adult human eye. Leucine-rich B7 protein was found to localize to both nucleus and cytoplasm of MG-63 cells, whereas mimecan was found only in the cytoplasm of these cells. Merged images obtained by confocal microscopy revealed certain cytoplasmic regions in MG-63 cells where B7 and mimecan proteins appeared to co-localize. CONCLUSIONS: The present work is the first to demonstrate the expression and localization of leucine-rich B7 protein in human eye and other human tissues. The results reported here are an essential prerequisite for future studies aimed at understanding the biological roles of leucine-rich B7 proteins in health and disease.
Assuntos
Olho/metabolismo , Expressão Gênica , Sialoglicoproteínas/genética , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Glicoproteínas/genética , Humanos , Immunoblotting , Técnicas Imunoenzimáticas , Peptídeos e Proteínas de Sinalização Intercelular , Microscopia Confocal , Proteoma , RNA Mensageiro/metabolismo , Coelhos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , TransfecçãoRESUMO
PURPOSE: To determine the role of PKCgamma in insulin-like growth factor (IGF)-I-induced phosphorylation of connexin (Cx)43 and control of gap junctions in lens epithelial cells. METHODS: N/N1003A rabbit lens epithelial cells were used in the experiments. PKC translocation or in vivo Cx43 phosphorylation on serine was determined by Western blot analysis. Gap junction activity was measured by scrape-loading/dye-transfer assay. The number of cell surface gap junction plaques was detected by confocal microscopy. The interaction between PKCgamma and Cx43 was determined by coimmunoprecipitation. In vitro Cx43 phosphorylation was assayed by PKC assay kit. Endogenous sn-1,2-diacylglycerol (DAG) was measured by detecting (32)P-labeled phosphatidic acid. RESULTS: IGF-I stimulated activation and translocation of PKCgamma in a dose- and time-dependent manner, acidic FGF (aFGF) had no effect on translocation of PKCgamma, and PKCalpha was not translocated by IGF-I at 25 ng/mL. PKCgamma translocation resulted in coimmunoprecipitation with and phosphorylation of Cx43. IGF-I- or DAG-induced activation of PKCgamma caused a decrease in gap junctions. IGF-I increased endogenous DAG. Exogenous CaCl(2) and DAG stimulated PKCgamma translocation. TMB-8, an internal calcium mobilization inhibitor, blocked CaCl(2)-induced PKCgamma translocation; however, it had no effect on IGF-I- or DAG-induced translocation of PKCgamma. CONCLUSIONS: PKCgamma mediated IGF-I-induced decreases in gap junctional communication through interaction with and phosphorylation of Cx43. IGF-I caused an increase in DAG, and this increased translocation of PKCgamma, whereas mobilization of calcium was not essential for IGF-I-stimulated translocation of PKCgamma.
Assuntos
Conexina 43/metabolismo , Células Epiteliais/efeitos dos fármacos , Junções Comunicantes/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/farmacologia , Isoenzimas/metabolismo , Cristalino/citologia , Proteína Quinase C/metabolismo , Animais , Western Blotting , Células Cultivadas , Diglicerídeos/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática , Células Epiteliais/metabolismo , Microscopia Confocal , Fosforilação , Coelhos , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Fatores de TempoRESUMO
PURPOSE: Little is known about the endocytosis and transcytosis of macromolecules into lens epithelium and fiber cells. The objective of this study was to determine if proteins (alpha-crystallins, beta-crystallins, and gamma-crystallins), carbohydrate (dextran), and plasmid DNA translocate from culture medium into these parts of the lens, with and without prior encapsulation into liposomes. METHODS: alpha-Crystallins, beta-crystallins, gamma-crystallins, and dextran were coupled with the fluorochrome Texas red, and plasmid DNA was labeled with propidium iodide. Adult rat lenses were incubated in medium containing one of these components with and without prior encapsulation of the macromolecule in commercially available liposomes (BioPORTER for alpha-crystallins, beta-crystallins, gamma-crystallins, and dextran; GenePORTER for plasmid DNA). Translocation of fluorescent macromolecule from the medium into the lens capsule, epithelium and fiber cells was monitored by confocal microscopy. RESULTS: alpha-Crystallins, beta-crystallins, gamma-crystallins, and dextran were present in the capsule, epithelium, and fiber cells after 5 h of incubation. Translocation of fluorescent protein macromolecules into the epithelium was greatly facilitated by encapsulation in BioPORTER liposomes. These macromolecules were localized within the cytoplasm of epithelium and fiber cells. Plasmid DNA was localized to the epithelium, but not the fiber cells. Prior encapsulation of plasmid DNA into GenePORTER liposomes did not increase the intensity of fluorescence localized in epithelium. Without encapsulation, plasmid DNA preferentially localized to the nuclei of epithelial cells, while after encapsulation, plasmid DNA preferentially localized to the cytoplasm. CONCLUSIONS: After incubation with cultured lenses, large macromolecules comprised of proteins and carbohydrates were localized within the cytoplasm of epithelial cells and fiber cells. Prior encapsulation of protein macromolecules into BioPORTER liposomes facilitated the translocation of macromolecules into the cytoplasm of epithelium. Incubation of lenses with plasmid DNA resulted in localization to the epithelium, but not fiber cells. Localization of plasmid DNA was not facilitated by prior encapsulation in GenePORTER. Encapsulated DNA preferentially localized to the cytoplasm of epithelial cells, while without encapsulation, plasmid DNA localizes to the nuclei of epithelial cells. Together, these studies demonstrate that macromolecules of potential biological importance can readily pass through the lens capsule into epithelial cells and in some cases transcytose through the epithelium into fiber cells of the cortex. Furthermore, these studies suggest that prior encapsulation of protein macromolecules may be a possible therapeutic delivery system of physiologically important macromolecules into the epithelium and/or fiber cells of the intact lens.
Assuntos
Cristalinas/metabolismo , DNA/metabolismo , Dextranos/metabolismo , Endocitose/fisiologia , Cristalino/metabolismo , Animais , Portadores de Fármacos , Células Epiteliais/metabolismo , Corantes Fluorescentes , Cápsula do Cristalino/metabolismo , Lipossomos , Substâncias Macromoleculares , Microscopia Confocal , Técnicas de Cultura de Órgãos , Plasmídeos/genética , Transporte Proteico , Ratos , Ratos Sprague-Dawley , XantenosRESUMO
BACKGROUND: One approach to resolving some of the in vivo functions of alpha-crystallin is to generate animal models where one or both of the alpha-crystallin gene products have been eliminated. In the single alpha-crystallin knockout mice, the remaining alpha-crystallin may fully or partially compensate for some of the functions of the missing protein, especially in the lens, where both alpha A and alpha B are normally expressed at high levels. The purpose of this study was to characterize gross lenticular morphology in normal mice and mice with the targeted disruption of alpha A- and alpha B-crystallin genes (alpha A/BKO). METHODS: Lenses from 129SvEvTac mice and alpha A/BKO mice were examined by standard scanning electron microscopy and confocal microscopy methodologies. RESULTS: Equatorial and axial (sagittal) dimensions of lenses for alpha A/BKO mice were significantly smaller than age-matched wild type lenses. No posterior sutures or fiber cells extending to the posterior capsule of the lens were found in alpha A/BKO lenses. Ectopical nucleic acid staining was observed in the posterior subcapsular region of 5 wk and anterior subcapsular cortex of 54 wk alpha A/BKO lenses. Gross morphological differences were also observed in the equatorial/bow, posterior and anterior regions of lenses from alpha A/BKO mice as compared to wild mice. CONCLUSION: These results indicated that both alpha A- and alpha B-crystallin are necessary for proper fiber cell formation, and that the absence of alpha-crystallin can lead to cataract formation.
Assuntos
Catarata/patologia , Cristalino/ultraestrutura , Cadeia A de alfa-Cristalina/fisiologia , Cadeia B de alfa-Cristalina/fisiologia , Animais , Catarata/genética , Deleção de Genes , Camundongos , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica de VarreduraRESUMO
BACKGROUND: Ehrlichia chaffeensis is an emerging tick-borne rickettsial pathogen responsible for human monocytic ehrlichiosis. Despite the induction of an active host immune response, the pathogen has evolved to persist in its vertebrate and tick hosts. Understanding how the organism progresses in tick and vertebrate host cells is critical in identifying effective strategies to block the pathogen transmission. Our recent molecular and proteomic studies revealed differences in numerous expressed proteins of the organism during its growth in different host environments. METHODOLOGY/PRINCIPAL FINDINGS: Transmission electron microscopy analysis was performed to assess morphological changes in the bacterium within macrophages and tick cells. The stages of pathogen progression observed included the attachment of the organism to the host cells, its engulfment and replication within a morulae by binary fission and release of the organisms from infected host cells by complete host cell lysis or by exocytosis. E. chaffeensis grown in tick cells was highly pleomorphic and appears to replicate by both binary fission and filamentous type cell divisions. The presence of Ehrlichia-like inclusions was also observed within the nucleus of both macrophages and tick cells. This observation was confirmed by confocal microscopy and immunoblot analysis. CONCLUSIONS/SIGNIFICANCE: Morphological differences in the pathogen's progression, replication, and processing within macrophages and tick cells provide further evidence that E. chaffeensis employs unique host-cell specific strategies in support of adaptation to vertebrate and tick cell environments.
Assuntos
Ehrlichia chaffeensis/ultraestrutura , Macrófagos/microbiologia , Microscopia Eletrônica de Transmissão/métodos , Carrapatos/microbiologia , Animais , Western Blotting , Ehrlichia chaffeensis/crescimento & desenvolvimento , Microscopia ConfocalRESUMO
Lens epithelium-derived growth factor (LEDGF) has been shown to enhance survival of lens epithelial cells (LECs) against stress. The objectives of these studies are to determine how LEDGF controls PKC gamma activity in normal LECs: how this control of PKC gamma regulates the phosphorylation of Connexin 43, the inhibition of gap junction activity, and the prevention of assembly of gap junctions in LECs. A rabbit LEC line, N/N1003A, was grown in the absence or presence of LEDGF. PKC gamma protein was translocated from the cytosolic fractions to the membrane fractions upon addition of LEDGF at 10 ng ml(-1). In whole cell extracts of N/N1003A cells, co-immunoprecipitation assays showed a protein-protein interaction between PKC gamma and Connexin 43. In the presence of LEDGF the activation of PKC gamma enhanced the phosphorylation of Connexin 43 by four-fold compared to the absence of LEDGF. The addition of LEDGF for 30 min resulted in a 65% decrease in gap junction Connexin 43 at the cell surface and a 70% decrease in gap junction activity. These results suggest that the activation of PKC gamma by LEDGF plays a major role in gap junction assembly/disassembly, which may enhance survival of LECs against osmolarity-stress induced by high sugar concentration.