Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397039

RESUMO

Human brain development involves a tightly regulated sequence of events that starts shortly after conception and continues up to adolescence. Before birth, neurogenesis occurs, implying an extensive differentiation process, sustained by changes in the gene expression profile alongside proteome remodeling, regulated by the ubiquitin proteasome system (UPS) and autophagy. The latter processes rely on the selective tagging with ubiquitin of the proteins that must be disposed of. E3 ubiquitin ligases accomplish the selective recognition of the target proteins. At the late stage of neurogenesis, the brain starts to take shape, and neurons migrate to their designated locations. After birth, neuronal myelination occurs, and, in parallel, neurons form connections among each other throughout the synaptogenesis process. Due to the malfunctioning of UPS components, aberrant brain development at the very early stages leads to neurodevelopmental disorders. Through deep data mining and analysis and by taking advantage of machine learning-based models, we mapped the transcriptomic profile of the genes encoding HECT- and ring-between-ring (RBR)-E3 ubiquitin ligases as well as E2 ubiquitin-conjugating and E1 ubiquitin-activating enzymes during human brain development, from early post-conception to adulthood. The inquiry outcomes unveiled some implications for neurodevelopment-related disorders.


Assuntos
Enzimas Ativadoras de Ubiquitina , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitinação , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Encéfalo/metabolismo
2.
Int J Mol Sci ; 24(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36674750

RESUMO

Hypoxia is a critical condition that governs survival, self-renewal, quiescence, metabolic shift and refractoriness to leukemic stem cell (LSC) therapy. The present study aims to investigate the hypoxia-driven regulation of the mammalian Target of the Rapamycin-2 (mTORC2) complex to unravel it as a novel potential target in chronic myeloid leukemia (CML) therapeutic strategies. After inducing hypoxia in a CML cell line model, we investigated the activities of mTORC1 and mTORC2. Surprisingly, we detected a significant activation of mTORC2 at the expense of mTORC1, accompanied by the nuclear localization of the main substrate phospho-Akt (Ser473). Moreover, the Gene Ontology analysis of CML patients' CD34+ cells showed enrichment in the mTORC2 signature, further strengthening our data. The deregulation of mTOR complexes highlights how hypoxia could be crucial in CML development. In conclusion, we propose a mechanism by which CML cells residing under a low-oxygen tension, i.e., in the leukemia quiescent LSCs, singularly regulate the mTORC2 and its downstream effectors.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Serina-Treonina Quinases TOR , Humanos , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Sirolimo/farmacologia , Doença Crônica , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Células-Tronco/metabolismo , Hipóxia
3.
J Cell Sci ; 132(22)2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31653780

RESUMO

Mammalian, or mechanistic, target of rapamycin complex 2 (mTORC2) regulates a variety of vital cellular processes, and its aberrant functioning is often associated with various diseases. Rictor is a peculiar and distinguishing mTORC2 component playing a pivotal role in controlling its assembly and activity. Among extant organisms, Rictor is conserved from unicellular eukaryotes to metazoans. We replaced two distinct, but conserved, glycine residues in both the Dictyostelium piaA gene and its human ortholog, RICTOR The two conserved residues are spaced ∼50 amino acids apart, and both are embedded within a conserved region falling in between the Ras-GEFN2 and Rictor-_V domains. The effects of point mutations on the mTORC2 activity and integrity were assessed by biochemical and functional assays. In both cases, these equivalent point mutations in the mammalian RICTOR and DictyosteliumpiaA gene impaired mTORC2 activity and integrity. Our data indicate that the two glycine residues are essential for the maintenance of mTORC2 activity and integrity in organisms that appear to be distantly related, suggesting that they have a evolutionarily conserved role in the assembly and proper mTORC2 functioning.


Assuntos
Dictyostelium/metabolismo , Glicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Sequência de Aminoácidos , Animais , Dictyostelium/genética , Glicina/genética , Humanos , Mamíferos , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Relação Estrutura-Atividade
4.
Int J Mol Sci ; 21(20)2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33081324

RESUMO

Iron is crucial to satisfy several mitochondrial functions including energy metabolism and oxidative phosphorylation. Patients affected by Myelodysplastic Syndromes (MDS) and acute myeloid leukemia (AML) are frequently characterized by iron overload (IOL), due to continuous red blood cell (RBC) transfusions. This event impacts the overall survival (OS) and it is associated with increased mortality in lower-risk MDS patients. Accordingly, the oral iron chelator Deferasirox (DFX) has been reported to improve the OS and delay leukemic transformation. However, the molecular players and the biological mechanisms laying behind remain currently mostly undefined. The aim of this study has been to investigate the potential anti-leukemic effect of DFX, by functionally and molecularly analyzing its effects in three different leukemia cell lines, harboring or not p53 mutations, and in human primary cells derived from 15 MDS/AML patients. Our findings indicated that DFX can lead to apoptosis, impairment of cell growth only in a context of IOL, and can induce a significant alteration of mitochondria network, with a sharp reduction in mitochondrial activity. Moreover, through a remarkable reduction of Murine Double Minute 2 (MDM2), known to regulate the stability of p53 and p73 proteins, we observed an enhancement of p53 transcriptional activity after DFX. Interestingly, this iron depletion-triggered signaling is enabled by p73, in the absence of p53, or in the presence of a p53 mutant form. In conclusion, we propose a mechanism by which the increased p53 family transcriptional activity and protein stability could explain the potential benefits of iron chelation therapy in terms of improving OS and delaying leukemic transformation.


Assuntos
Deferasirox/farmacologia , Quelantes de Ferro/farmacologia , Leucemia Mieloide Aguda/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Humanos , Ferro/metabolismo , Mitocôndrias/efeitos dos fármacos , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo
5.
J Cell Mol Med ; 23(6): 4349-4357, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31033209

RESUMO

Myeloproliferative neoplasms are chronic myeloid cancers divided in Philadelphia positive and negative. The JAK2 V617F is the most common mutation in Philadelphia negative patients and results in a constitutive activation of the JAK/STAT pathway, conferring a proliferative advantage and apoptosis inhibition. Recent studies identified a functional crosstalk between the JAK/STAT and mTOR pathways. The identification of an effective therapy is often difficult, so the availability of new therapeutic approaches might be attractive. Previous studies showed that curcumin, the active principle of the Curcuma longa, can suppress JAK2/STAT pathways in different type of cancer and injuries. In this study, we investigated the anti-proliferative and pro-apoptotic effects of curcumin in JAK2 V617F-mutated cells. HEL cell line and cells from patients JAK2 V617F mutated have been incubated with increasing concentrations of curcumin for different time. Apoptosis and proliferation were evaluated. Subsequently, JAK2/STAT and AKT/mTOR pathways were investigated at both RNA and protein levels. We found that curcumin induces apoptosis and inhibition of proliferation in HEL cells. Furthermore, we showed that curcumin inhibits JAK2/STAT and mTORC1 pathways in JAK2 V617F-mutated cells. This inhibition suggests that curcumin could represent an alternative strategy to be explored for the treatment of patients with myeloproliferative neoplasms.


Assuntos
Curcumina/farmacologia , Janus Quinase 2/antagonistas & inibidores , Leucemia Eritroblástica Aguda/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Mutação , Transtornos Mieloproliferativos/patologia , Fatores de Transcrição STAT/antagonistas & inibidores , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais , Estudos de Casos e Controles , Movimento Celular , Proliferação de Células , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Leucemia Eritroblástica Aguda/tratamento farmacológico , Leucemia Eritroblástica Aguda/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Pessoa de Meia-Idade , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/metabolismo , Fosforilação , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Adulto Jovem
6.
J Cell Sci ; 130(3): 551-562, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28049717

RESUMO

Cyclic AMP (cAMP) binding to G-protein-coupled receptors (GPCRs) orchestrates chemotaxis and development in Dictyostelium. By activating the RasC-TORC2-PKB (PKB is also known as AKT in mammals) module, cAMP regulates cell polarization during chemotaxis. TORC2 also mediates GPCR-dependent stimulation of adenylyl cyclase A (ACA), enhancing cAMP relay and developmental gene expression. Thus, mutants defective in the TORC2 Pia subunit (also known as Rictor in mammals) are impaired in chemotaxis and development. Near-saturation mutagenesis of a Pia mutant by random gene disruption led to selection of two suppressor mutants in which spontaneous chemotaxis and development were restored. PKB phosphorylation and chemotactic cell polarization were rescued, whereas Pia-dependent ACA stimulation was not restored but bypassed, leading to cAMP-dependent developmental gene expression. Knocking out the gene encoding the adenylylcyclase B (ACB) in the parental strain showed ACB to be essential for this process. The gene tagged in the suppressor mutants encodes a newly unidentified HECT ubiquitin ligase that is homologous to mammalian HERC1, but harbours a pleckstrin homology domain. Expression of the isolated wild-type HECT domain, but not a mutant HECT C5185S form, from this protein was sufficient to reconstitute the parental phenotype. The new ubiquitin ligase appears to regulate cell sensitivity to cAMP signalling and TORC2-dependent PKB phosphorylation.


Assuntos
Quimiotaxia , Dictyostelium/citologia , Dictyostelium/enzimologia , Proteínas de Protozoários/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenilil Ciclases/metabolismo , Polaridade Celular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , DNA/metabolismo , Dictyostelium/genética , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Supressores , Modelos Biológicos , Mutação/genética , Fenótipo , Fosforilação , Domínios Proteicos , Proteínas de Protozoários/química , Transdução de Sinais , Especificidade por Substrato , Ubiquitina-Proteína Ligases/química
7.
Haematologica ; 104(4): 717-728, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30409797

RESUMO

The oncoprotein BCR-ABL1 triggers chronic myeloid leukemia. It is clear that the disease relies on constitutive BCR-ABL1 kinase activity, but not all the interactors and regulators of the oncoprotein are known. We describe and validate a Drosophila leukemia model based on inducible human BCR-ABL1 expression controlled by tissue-specific promoters. The model was conceived to be a versatile tool for performing genetic screens. BCR-ABL1 expression in the developing eye interferes with ommatidia differentiation and expression in the hematopoietic precursors increases the number of circulating blood cells. We show that BCR-ABL1 interferes with the pathway of endogenous dAbl with which it shares the target protein Ena. Loss of function of ena or Dab, an upstream regulator of dAbl, respectively suppresses or enhances both the BCR-ABL1-dependent phenotypes. Importantly, in patients with leukemia decreased human Dab1 and Dab2 expression correlates with more severe disease and Dab1 expression reduces the proliferation of leukemia cells. Globally, these observations validate our Drosophila model, which promises to be an excellent system for performing unbiased genetic screens aimed at identifying new BCR-ABL1 interactors and regulators in order to better elucidate the mechanism of leukemia onset and progression.


Assuntos
Animais Geneticamente Modificados , Proteínas de Fusão bcr-abl , Regulação Leucêmica da Expressão Gênica , Leucemia Mielogênica Crônica BCR-ABL Positiva , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster , Proteínas de Fusão bcr-abl/biossíntese , Proteínas de Fusão bcr-abl/genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia
8.
Mol Cell Biochem ; 434(1-2): 51-60, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28432552

RESUMO

Nandrolone decanoate (ND), an anabolic-androgenic steroid prohibited in collegiate and professional sports, is associated with detrimental cardiovascular effects through redox-dependent mechanisms. We previously observed that high-dose short-term ND administration (15 mg/kg for 2 weeks) did not induce left heart ventricular hypertrophy and, paradoxically, improved postischemic response, whereas chronic ND treatment (5 mg/kg twice a week for 10 weeks) significantly reduced the cardioprotective effect of postconditioning, with an increase in infarct size and a decrease in cardiac performance. We wanted to determine whether short-term ND administration could affect the oxidative redox status in animals exposed to acute restraint stress. Our hypothesis was that, depending on treatment schedule, ND may have a double-edged sword effect. Measurement of malondialdehyde and 4-hydroxynonenal, two oxidative stress markers, in rat plasma and left heart ventricular tissue, revealed that the levels of both markers were increased in animals exposed to restraint stress, whereas no increase in marker levels was noted in animals pretreated with ND, indicating a possible protective action of ND against stress-induced oxidative damage. Furthermore, isolation and identification of proteins extracted from the left heart ventricular tissue samples of rats pretreated or not with ND and exposed to acute stress showed a prevalent expression of enzymes involved in amino acid synthesis and energy metabolism. Among other proteins, peroxiredoxin 6 and alpha B-crystallin, both involved in the oxidative stress response, were predominantly expressed in the left heart ventricular tissues of the ND-pretreated rats. In conclusion, ND seems to reduce oxidative stress by inducing the expression of antioxidant proteins in the hearts of restraint-stressed animals, thus contributing to amelioration of postischemic heart performance.


Assuntos
Anabolizantes/farmacologia , Biomarcadores/metabolismo , Ventrículos do Coração/efeitos dos fármacos , Imobilização , Nandrolona/administração & dosagem , Estresse Oxidativo , Estresse Fisiológico , Aldeídos/sangue , Aldeídos/metabolismo , Aminoácidos/biossíntese , Animais , Biomarcadores/sangue , Western Blotting , Eletroforese em Gel Bidimensional , Metabolismo Energético , Masculino , Malondialdeído/sangue , Malondialdeído/metabolismo , Espectrometria de Massas , Ratos , Ratos Sprague-Dawley
9.
Int J Mol Sci ; 18(10)2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29048338

RESUMO

Signal transduction through G-protein-coupled receptors (GPCRs) is central for the regulation of virtually all cellular functions, and it has been widely implicated in human diseases. These receptors activate a common molecular switch that is represented by the heterotrimeric G-protein generating a number of second messengers (cAMP, cGMP, DAG, IP3, Ca2+ etc.), leading to a plethora of diverse cellular responses. Spatiotemporal regulation of signals generated by a given GPCR is crucial for proper signalling and is accomplished by a series of biochemical modifications. Over the past few years, it has become evident that many signalling proteins also undergo ubiquitination, a posttranslational modification that typically leads to protein degradation, but also mediates processes such as protein-protein interaction and protein subcellular localization. The social amoeba Dictyostelium discoideum has proven to be an excellent model to investigate signal transduction triggered by GPCR activation, as cAMP signalling via GPCR is a major regulator of chemotaxis, cell differentiation, and multicellular morphogenesis. Ubiquitin ligases have been recently involved in these processes. In the present review, we will summarize the most significant pathways activated upon GPCRs stimulation and discuss the role played by ubiquitination in Dictyostelium cells.


Assuntos
Dictyostelium/metabolismo , Proteínas de Protozoários/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Ubiquitinação , Proteínas de Protozoários/genética , Receptores Acoplados a Proteínas G/genética
10.
J Cell Sci ; 127(Pt 3): 653-62, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24284075

RESUMO

The Src-like-adaptor protein (SLAP) is an adaptor protein sharing considerable structural homology with Src. SLAP is expressed in a variety of cells and regulates receptor tyrosine kinase signaling by direct association. In this report, we show that SLAP associates with both wild-type and oncogenic c-Kit (c-Kit-D816V). The association involves the SLAP SH2 domain and receptor phosphotyrosine residues different from those mediating Src interaction. Association of SLAP triggers c-Kit ubiquitylation which, in turn, is followed by receptor degradation. Although SLAP depletion potentiates c-Kit downstream signaling by stabilizing the receptor, it remains non-functional in c-Kit-D816V signaling. Ligand-stimulated c-Kit or c-Kit-D816V did not alter membrane localization of SLAP. Interestingly oncogenic c-Kit-D816V, but not wild-type c-Kit, phosphorylates SLAP on residues Y120, Y258 and Y273. Physical interaction between c-Kit-D816V and SLAP is mandatory for the phosphorylation to take place. Although tyrosine-phosphorylated SLAP does not affect c-Kit-D816V signaling, mutation of these tyrosine sites to phenylalanine can restore SLAP activity. Taken together the data demonstrate that SLAP negatively regulates wild-type c-Kit signaling, but not its oncogenic counterpart, indicating a possible mechanism by which the oncogenic c-Kit bypasses the normal cellular negative feedback control.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Proto-Oncogênicas c-kit/biossíntese , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Transdução de Sinais/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Humanos , Células Jurkat , Fosforilação , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Fator de Células-Tronco/genética , Fator de Células-Tronco/metabolismo , Ubiquitinação , Domínios de Homologia de src/genética
11.
Int J Cancer ; 136(11): 2598-609, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25359574

RESUMO

ATF2 is a transcription factor involved in stress and DNA damage. A correlation between ATF2 JNK-mediated activation and resistance to damaging agents has already been reported. The purpose of the present study was to investigate whether ATF2 may have a role in acquired resistance to cisplatin in non-small cell lung cancer (NSCLC). mRNA and protein analysis on matched cancer and corresponding normal tissues from surgically resected NSCLC have been performed. Furthermore, in NSCLC cell lines, ATF2 expression levels were evaluated and correlated to platinum (CDDP) resistance. Celastrol-mediated ATF2/cJUN activity was measured. High expression levels of both ATF2 transcript and proteins were observed in lung cancer specimens (p << 0.01, Log2 (FC) = +4.7). CDDP-resistant NSCLC cell lines expressed high levels of ATF2 protein. By contrast, Celastrol-mediated ATF2/cJUN functional inhibition restored the response to CDDP. Moreover, ATF2 protein activation correlates with worse outcome in advanced CDDP-treated patients. For the first time, it has been shown NSCLC ATF2 upregulation at both mRNA/protein levels in NSCLC. In addition, we reported that in NSCLC cell lines a correlation between ATF2 protein expression and CDDP resistance occurs. Altogether, our results indicate a potential increase in CDDP sensitivity, on Celastrol-mediated ATF2/cJUN inhibition. These data suggest a possible involvement of ATF2 in NSCLC CDDP-resistance.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/tratamento farmacológico , Sistema de Sinalização das MAP Quinases , Triterpenos/farmacologia , Fator 2 Ativador da Transcrição/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Triterpenos Pentacíclicos , Prognóstico
12.
BMC Cancer ; 13: 348, 2013 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-23865766

RESUMO

BACKGROUND: Mutation(s) of the JAK2 gene (V617F) has been described in a significant proportion of Philadelphia negative Myeloproliferative Neoplasms (MPN) patients and its detection is now a cornerstone in the diagnostic algorithm. METHODS: We developed a novel assay based on peptide nucleic acid (PNA) technology coupled to immuno-fluorescence microscopy (PNA-FISH) for the specific detection at a single cell level of JAK2-mutation thus improving both the diagnostic resolution and the study of clonal prevalence. RESULTS: Using this assay we found a percentage of mutated CD34+ cells ranging from 40% to 100% in Polycythemia Vera patients, from 15% to 80% in Essential Thrombocythemia and from 25% to 100% in Primary Myelofibrosis. This method allows to distinguish, with a high degree of specificity, at single cell level, between CD34+ progenitor stem cells harbouring the mutated or the wild type form of JAK2 in NPM patients. CONCLUSIONS: This method allows to identify multiple gene abnormalities which will be of paramount relevance to understand the pathophysiology and the evolution of any type of cancer.


Assuntos
Janus Quinase 2/genética , Microscopia de Fluorescência/métodos , Mutação , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/genética , Ácidos Nucleicos Peptídicos , Separação Celular , Citometria de Fluxo , Humanos , Reação em Cadeia da Polimerase
13.
Eur J Cell Biol ; 101(3): 151230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35550931

RESUMO

Iron is the most abundant transition metal in all living organisms and is essential for several cellular activities, including respiration, oxygen transport, energy production and regulation of gene expression. Iron starvation is used by professional phagocytes, from Dictyostelium to macrophages, as a form of defense mechanism against intracellular pathogens. Previously, we showed that Dictyostelium cells express the proton-driven iron transporter Nramp1 (Natural Resistance-Associated Macrophage Protein 1) and the homolog NrampB (Nramp2) in membranes of macropinosomes and phagosomes or of the contractile vacuole network, respectively. The Nramp-driven transport of iron across membranes is selective for ferrous ions. Since iron is mostly present as ferric ions in growth media and in engulfed bacteria, we have looked for proteins with ferric reductase activity. The Dictyostelium genome does not encode for classical STEAP (Six-Transmembrane Epithelial Antigen of Prostate) ferric reductases, but harbors three genes encoding putative ferric chelate reductase belonging to the Cytochrome b561 family containing a N terminus DOMON domain (DOpamine ß-MONooxygenase N-terminal domain). We have cloned the three genes, naming them fr1A, fr1B and fr1C. fr1A and fr1B are mainly expressed in the vegetative stage while fr1C is highly expressed in the post aggregative stage. All three reductases are localized in the endoplasmic reticulum, but Fr1A is also found in endolysosomal vesicles, in the Golgi and, to a much lower degree, in the plasma membrane, whereas Fr1C is homogeneously distributed in the plasma membrane and in macropinosomal and phagosomal membranes. To gain insight in the function of the three genes we generated KO mutants, but gene disruption was successful only for two of them (fr1A and fr1C), being very likely lethal for fr1B. fr1A- shows a slight delay in the aggregation stage of development, while fr1C- gives rise to large multi-tipped streams during aggregation and displays a strong delay in fruiting body formation. The two single mutants display altered cell growth under conditions of ferric ions overloading and, in the ability to reduce Fe3+, confirming a role of these putative ferric reductases in iron reduction and transport from endo-lysosomal vesicles to the cytosol.


Assuntos
Dictyostelium , FMN Redutase , Dictyostelium/enzimologia , Dictyostelium/genética , FMN Redutase/genética , FMN Redutase/metabolismo , Íons/metabolismo , Ferro/metabolismo
14.
J Clin Med ; 11(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35054018

RESUMO

Large HERC E3 ubiquitin ligase family members, HERC1 and HERC2, are staggeringly complex proteins that can intervene in a wide range of biological processes, such as cell proliferation, DNA repair, neurodevelopment, and inflammation. Therefore, mutations or dysregulation of large HERCs is associated with neurological disorders, DNA repair defects, and cancer. Though their role in solid tumors started to be investigated some years ago, our knowledge about HERCs in non-solid neoplasm is greatly lagging behind. Chronic Myeloid Leukemia (CML) is a model onco-hematological disorder because of its unique and unambiguous relation between genotype and phenotype due to a single genetic alteration. In the present study, we ascertained that the presence of the BCR-ABL fusion gene was inversely associated with the expression of the HERC1 and HERC2 genes. Upon the achievement of remission, both HERC1 and HERC2 mRNAs raised again to levels comparable to those of the healthy donors. Additionally, our survey unveiled that their gene expression is sensitive to different Tyrosine Kinases Inhibitors (TKIs) in a time-dependent fashion. Interestingly, for the first time, we also observed a differential HERC1 expression when the leukemic cell lines were induced to differentiate towards different lineages revealing that HERC1 protein expression is associated with the differentiation process in a lineage-specific manner. Taken together, our findings suggest that HERC1 might act as a novel potential player in blood cell differentiation. Overall, we believe that our results are beneficial to initiate exploring the role/s of large HERCs in non-solid neoplasms.

15.
J Transl Med ; 9: 100, 2011 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-21718475

RESUMO

BACKGROUND: Aurora kinase A (AURKA) is a member of serine/threonine kinase family. Several kinases belonging to this family are activated in the G2/M phase of the cell cycle being involved in mitotic chromosomal segregation. AURKA overexpression is significantly associated with neoplastic transformation in several tumors and deregulated Aurora Kinases expression leads to chromosome instability, thus contributing to cancer progression. The purpose of the present study was to investigate the expression of AURKA in non small cell lung cancer (NSCLC) specimens and to correlate its mRNA or protein expression with patients' clinico-pathological features. MATERIALS AND METHODS: Quantitative real-time PCR and immunohistochemistry analysis on matched cancer and corresponding normal tissues from surgically resected non-small cell lung cancers (NSCLC) have been performed aiming to explore the expression levels of AURKA gene. RESULTS: AURKA expression was significantly up-modulated in tumor samples compared to matched lung tissue (p<0.01, mean log2(FC)=1.5). Moreover, AURKA was principally up-modulated in moderately and poorly differentiated lung cancers (p<0.01), as well as in squamous and adenocarcinomas compared to the non-invasive bronchioloalveolar histotype (p=0.029). No correlation with survival was observed. CONCLUSION: These results indicate that in NSCLC AURKA over-expression is restricted to specific subtypes and poorly differentiated tumors.


Assuntos
Desdiferenciação Celular , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Aurora Quinase A , Aurora Quinases , Carcinoma Pulmonar de Células não Pequenas/classificação , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/classificação , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Blood ; 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19965658

RESUMO

Chronic Myeloid Leukaemia (CML) is initiated and maintained by the tyrosine kinase BCR-ABL. ABL-specific tyrosine kinase inhibitors (TKIs), whilst effective against mature CML cells, induce little apoptosis in stem/progenitor cells. However, in stem/progenitor cells TKIs exert potent anti-proliferative effects through a poorly understood mechanism. We showed that in CD34(+) CML cells FOXO1, 3a and 4 (FOXOs) were phosphorylated, predominantly cytoplasmic and inactive, consequent to BCR-ABL expression. TKIs decreased phosphorylation of FOXOs, leading to their re-localisation from cytoplasm (inactive) to nucleus (active), thus inducing G1 arrest. Of key importance, despite BCR-ABL activity, primitive quiescent CML stem cells showed low levels of FOXO phosphorylation and predominant nuclear localisation, resembling the pattern in normal stem cells. These results demonstrate for the first time that TKI-induced G1 arrest in CML progenitor cells is mediated by re-activation of FOXOs, whilst quiescence of CML stem cells is regulated by sustained FOXO activity. These data contribute to our understanding of CML stem cell quiescence and TKI activity, suggesting new strategies to target CML stem/progenitor cells by preventing or reversing this effect.

17.
Front Cell Dev Biol ; 9: 720623, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34888305

RESUMO

In aerobic organisms, oxygen is essential for efficient energy production, and it acts as the last acceptor of the mitochondrial electron transport chain and as regulator of gene expression. However, excessive oxygen can lead to production of deleterious reactive oxygen species. Therefore, the directed migration of single cells or cell clumps from hypoxic areas toward a region of optimal oxygen concentration, named aerotaxis, can be considered an adaptive mechanism that plays a major role in biological and pathological processes. One relevant example is the development of O2 gradients when tumors grow beyond their vascular supply, leading frequently to metastasis. In higher eukaryotic organisms, aerotaxis has only recently begun to be explored, but genetically amenable model organisms suitable to dissect this process remain an unmet need. In this regard, we sought to assess whether Dictyostelium cells, which are an established model for chemotaxis and other motility processes, could sense oxygen gradients and move directionally in their response. By assessing different physical parameters, our findings indicate that both growing and starving Dictyostelium cells under hypoxic conditions migrate directionally toward regions of higher O2 concentration. This migration is characterized by a specific pattern of cell arrangement. A thickened circular front of high cell density (corona) forms in the cell cluster and persistently moves following the oxygen gradient. Cells in the colony center, where hypoxia is more severe, are less motile and display a rounded shape. Aggregation-competent cells forming streams by chemotaxis, when confined under hypoxic conditions, undergo stream or aggregate fragmentation, giving rise to multiple small loose aggregates that coordinately move toward regions of higher O2 concentration. By testing a panel of mutants defective in chemotactic signaling, and a catalase-deficient strain, we found that the latter and the pkbR1 null exhibited altered migration patterns. Our results suggest that in Dictyostelium, like in mammalian cells, an intracellular accumulation of hydrogen peroxide favors the migration toward optimal oxygen concentration. Furthermore, differently from chemotaxis, this oxygen-driven migration is a G protein-independent process.

18.
Cancers (Basel) ; 13(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477751

RESUMO

HERC E3 subfamily members are parts of the E3 ubiquitin ligases and key players for a wide range of cellular functions. Though the involvement of the Ubiquitin Proteasome System in blood disorders has been broadly studied, so far the role of large HERCs in this context remains unexplored. In the present study we examined the expression of the large HECT E3 Ubiquitin Ligase, HERC1, in blood disorders. Our findings revealed that HERC1 gene expression was severely downregulated both in acute and in chronic myelogenous leukemia at diagnosis, while it is restored after complete remission achievement. Instead, in Philadelphia the negative myeloproliferative neoplasm HERC1 level was peculiarly controlled, being very low in Primary Myelofibrosis and significantly upregulated in those Essential Thrombocytemia specimens harboring the mutation in the calreticulin gene. Remarkably, in CML cells HERC1 mRNA level was associated with the BCR-ABL1 kinase activity and the HERC1 protein physically interacted with BCR-ABL1. Furthermore, we found that HERC1 was directly tyrosine phosphorylated by the ABL kinase. Overall and for the first time, we provide original evidence on the potential tumor-suppressing or -promoting properties, depending on the context, of HERC1 in myeloid related blood disorders.

19.
Cancers (Basel) ; 13(2)2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33466839

RESUMO

Chronic myeloid leukemia is a myeloproliferative neoplasm characterized by the presence of the Philadelphia chromosome that originates from the reciprocal translocation t(9;22)(q34;q11.2) and encodes for the constitutively active tyrosine kinase protein BCR-ABL1 from the Breakpoint Cluster Region (BCR) sequence and the Abelson (ABL1) gene. Despite BCR-ABL1 being one of the most studied oncogenic proteins, some molecular mechanisms remain enigmatic, and several of the proteins, acting either as positive or negative BCR-ABL1 regulators, are still unknown. The Drosophila melanogaster represents a powerful tool for genetic investigations and a promising model to study the BCR-ABL1 signaling pathway. To identify new components involved in BCR-ABL1 transforming activity, we conducted an extensive genetic screening using different Drosophila mutant strains carrying specific small deletions within the chromosomes 2 and 3 and the gmrGal4,UAS-BCR-ABL1 4M/TM3 transgenic Drosophila as the background. From the screening, we identified several putative candidate genes that may be involved either in sustaining chronic myeloid leukemia (CML) or in its progression. We also identified, for the first time, a tight connection between the BCR-ABL1 protein and Rab family members, and this correlation was also validated in CML patients. In conclusion, our data identified many genes that, by interacting with BCR-ABL1, regulate several important biological pathways and could promote disease onset and progression.

20.
Haematologica ; 95(8): 1308-16, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20534700

RESUMO

BACKGROUND: Usefulness of iron chelation therapy in myelodysplastic patients is still under debate but many authors suggest its possible role in improving survival of low-risk myelodysplastic patients. Several reports have described an unexpected effect of iron chelators, such as an improvement in hemoglobin levels, in patients affected by myelodysplastic syndromes. Furthermore, the novel chelator deferasirox induces a similar improvement more rapidly. Nuclear factor-kappaB is a key regulator of many cellular processes and its impaired activity has been described in different myeloid malignancies including myelodysplastic syndromes. DESIGN AND METHODS: We evaluated deferasirox activity on nuclear factor-kappaB in myelodysplastic syndromes as a possible mechanism involved in hemoglobin improvement during in vivo treatment. Forty peripheral blood samples collected from myelodysplastic syndrome patients were incubated with 50 muM deferasirox for 18h. RESULTS: Nuclear factor-kappaB activity dramatically decreased in samples showing high basal activity as well as in cell lines, whereas no similar behavior was observed with other iron chelators despite a similar reduction in reactive oxygen species levels. Additionally, ferric hydroxyquinoline incubation did not decrease deferasirox activity in K562 cells suggesting the mechanism of action of the drug is independent from cell iron deprivation by chelation. Finally, incubation with both etoposide and deferasirox induced an increase in K562 apoptotic rate. CONCLUSIONS: Nuclear factor-kappaB inhibition by deferasirox is not seen from other chelators and is iron and reactive oxygen species scavenging independent. This could explain the hemoglobin improvement after in vivo treatment, such that our hypothesis needs to be validated in further prospective studies.


Assuntos
Benzoatos/farmacologia , Ferro/antagonistas & inibidores , NF-kappa B/antagonistas & inibidores , Espécies Reativas de Oxigênio/antagonistas & inibidores , Triazóis/farmacologia , Idoso , Idoso de 80 Anos ou mais , Apoptose/efeitos dos fármacos , Western Blotting , Deferasirox , Ensaio de Desvio de Mobilidade Eletroforética , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Ferro/metabolismo , Quelantes de Ferro/farmacologia , Células K562 , Leucemia/metabolismo , Leucemia/patologia , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/patologia , NF-kappa B/metabolismo , Ligação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA