Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroinflammation ; 19(1): 103, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35488271

RESUMO

OBJECTIVE: c-Met, a tyrosine kinase receptor, is the unique receptor for hepatocyte growth factor (HGF). The HGF/c-Met axis is reported to modulate cell migration, maturation, cytokine production, and antigen presentation. Here, we report that CD4+c-Met+ T cells are detected at increased levels in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). METHODS: c-Met expression by CD4+ T cells was analyzed mostly by flow cytometry and by immunohistochemistry from mice and human PBMCs. The in vivo role of CD4+c-Met+ T cells was assessed in EAE. RESULTS: CD4+c-Met+ T cells found in the CNS during EAE peak disease are characterized by a pro-inflammatory phenotype skewed towards a Th1 and Th17 polarization, with enhanced adhesion and transmigration capacities correlating with increased expression of integrin α4 (Itgα4). The adoptive transfer of Itgα4-expressing CD4+Vα3.2+c-Met+ T cells induces increased disease severity compared to CD4+Vα3.2+c-Met- T cells. Finally, CD4+c-Met+ T cells are detected in the brain of MS patients, as well as in the blood with a higher level of Itgα4. These results highlight c-Met as an immune marker of highly pathogenic pro-inflammatory and pro-migratory CD4+ T lymphocytes associated with neuroinflammation.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Encefalomielite Autoimune Experimental/patologia , Humanos , Integrina alfa4 , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Doenças Neuroinflamatórias , Células Th17
2.
FASEB J ; 23(12): 4105-16, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19667118

RESUMO

On appropriate stimuli, quiescent endothelial cells start to proliferate and form de novo blood vessels through angiogenesis. To further define molecular mechanisms accompanying the activation of endothelial cells during angiogenesis, we identified genes that were differentially regulated during this process using microarray analyses. In this work, we established a regulatory role for Sushi repeat protein X-linked 2 (Srpx2) in endothelial cell remodeling during angiogenesis. In particular, silencing of Srpx2 using small interfering RNAs (siRNAs) specifically attenuated endothelial cell migration and delayed angiogenic sprout formation. In vivo, Srpx2 expression was detected in de novo formation of blood vessels in angiogenic tissues by in situ mRNA hybridization and immunostaining. Pulldown experiments identified Srpx2 as a ligand for vascular uPAR, a key molecule involved in invasive migration of angiogenic endothelium. Immunostaining revealed coexpression of the Srpx2 and uPAR on vascular endothelium. These findings suggest that Srpx2 regulates endothelial cell migration and tube formation and provides a new target for modulating angiogenesis.


Assuntos
Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Neovascularização Fisiológica/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Regulação da Expressão Gênica/fisiologia , Inativação Gênica , Humanos , Proteínas de Membrana , Proteínas de Neoplasias , Análise Serial de Proteínas , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo
3.
Int Immunol ; 20(2): 247-57, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18156623

RESUMO

One of the key components of the innate immune response is the recognition of microbial products such as LPS by Toll-like receptors on monocytes and neutrophils. We show here that short-term stimulation of primary human monocytes with LPS led to an increase in adhesion of monocytes to endothelial cells and a dramatic decrease in transendothelial migration under static conditions. In contrast, under normal physiological flow, monocyte adhesion and migration across a human umbilical vein endothelial cell monolayer appeared to be unaffected by LPS treatment. LPS stimulation of monocytes activated beta(1) and beta(2) integrins, but did not increase their surface expression levels. During septic shock, reduction in blood flow as a result of vasodilation and vascular permeability leads to adhesion and accumulation of LPS-stimulated circulating monocytes onto the blood vessel walls. The different findings of monocyte migration under static and flow conditions in our study may offer one explanation for this phenomenon. The rapid engagement of LPS-activated monocytes preventing transendothelial migration could represent a novel mechanism of bacterial exclusion from the vasculature. This occurs during the early stages of sepsis, and in turn may modulate the severity of the pathophysiology.


Assuntos
Adesão Celular/efeitos dos fármacos , Quimiotaxia de Leucócito/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Monócitos/fisiologia , Antígenos CD18/metabolismo , Inibição de Migração Celular , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/imunologia , Humanos , Monócitos/efeitos dos fármacos , Veias Umbilicais
4.
Arterioscler Thromb Vasc Biol ; 27(10): 2104-12, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17615384

RESUMO

Exploring the role of junctional adhesion molecules (JAMs) has proven to be varied and controversial. The purpose of this review is to discuss the new and exciting roles of these IgSF molecules and how they have evolved to contribute to diverse functions from development to inflammation. In particular, recent research has focused on JAM subfamily members JAM-A, -B, and -C with newly described roles in leukocyte trafficking during inflammation and angiogenesis. However, research on all JAM family members has demonstrated recurring themes with striking similarities in the many diverse processes they are now known to regulate.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células Endoteliais/metabolismo , Migração e Rolagem de Leucócitos , Leucócitos/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/imunologia , Células Endoteliais/imunologia , Humanos , Inflamação/metabolismo , Moléculas de Adesão Juncional , Migração e Rolagem de Leucócitos/imunologia , Leucócitos/imunologia , Ligantes , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Transdução de Sinais/imunologia
5.
Nat Commun ; 9(1): 355, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367702

RESUMO

Recruitment of circulating monocytes is critical for tumour angiogenesis. However, how human monocyte subpopulations extravasate to tumours is unclear. Here we show mechanisms of extravasation of human CD14dimCD16+ patrolling and CD14+CD16+ intermediate proangiogenic monocytes (HPMo), using human tumour xenograft models and live imaging of transmigration. IFNγ promotes an increase of the chemokine CX3CL1 on vessel lumen, imposing continuous crawling to HPMo and making these monocytes insensitive to chemokines required for their extravasation. Expression of the angiogenic factor VEGF and the inflammatory cytokine TNF by tumour cells enables HPMo extravasation by inducing GATA3-mediated repression of CX3CL1 expression. Recruited HPMo boosts angiogenesis by secreting MMP9 leading to release of matrix-bound VEGF-A, which amplifies the entry of more HPMo into tumours. Uncovering the extravasation cascade of HPMo sets the stage for future tumour therapies.


Assuntos
Adenocarcinoma/imunologia , Neoplasias da Mama/imunologia , Movimento Celular/imunologia , Neoplasias Colorretais/imunologia , Inflamação/imunologia , Monócitos/imunologia , Neovascularização Patológica/imunologia , Animais , Linhagem Celular Tumoral , Quimiocina CX3CL1/imunologia , Fator de Transcrição GATA3/imunologia , Humanos , Interferon gama/imunologia , Metaloproteinase 9 da Matriz/imunologia , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Fator de Necrose Tumoral alfa/imunologia , Fator A de Crescimento do Endotélio Vascular/imunologia
6.
PLoS One ; 11(7): e0159679, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27442505

RESUMO

Atherosclerosis, caused in part by monocytes in plaques, continues to be a disease that afflicts the modern world. Whilst significant steps have been made in treating this chronic inflammatory disease, questions remain on how to prevent monocyte and macrophage accumulation in atherosclerotic plaques. Junctional Adhesion Molecule C (JAM-C) expressed by vascular endothelium directs monocyte transendothelial migration in a unidirectional manner leading to increased inflammation. Here we show that interfering with JAM-C allows reverse-transendothelial migration of monocyte-derived cells, opening the way back out of the inflamed environment. To study the role of JAM-C in plaque regression we used a mouse model of atherosclerosis, and tested the impact of vascular JAM-C expression levels on monocyte reverse transendothelial migration using human cells. Studies in-vitro under inflammatory conditions revealed that overexpression or gene silencing of JAM-C in human endothelium exposed to flow resulted in higher rates of monocyte reverse-transendothelial migration, similar to antibody blockade. We then transplanted atherosclerotic, plaque-containing aortic arches from hyperlipidemic ApoE-/- mice into wild-type normolipidemic recipient mice. JAM-C blockade in the recipients induced greater emigration of monocyte-derived cells and further diminished the size of atherosclerotic plaques. Our findings have shown that JAM-C forms a one-way vascular barrier for leukocyte transendothelial migration only when present at homeostatic copy numbers. We have also shown that blocking JAM-C can reduce the number of atherogenic monocytes/macrophages in plaques by emigration, providing a novel therapeutic strategy for chronic inflammatory pathologies.


Assuntos
Movimento Celular , Molécula C de Adesão Juncional/metabolismo , Monócitos/patologia , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Animais , Anticorpos/farmacologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Artérias Carótidas/patologia , Movimento Celular/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação/patologia , Junções Intercelulares/efeitos dos fármacos , Junções Intercelulares/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/patologia , Lipídeos/sangue , Camundongos Endogâmicos C57BL , Modelos Biológicos , Monócitos/efeitos dos fármacos , Placa Aterosclerótica/sangue
7.
Biochem Soc Trans ; 36(Pt 2): 203-11, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18363562

RESUMO

Rapid mobilization of leucocytes through endothelial and epithelial barriers is key in immune system reactivity. The underlying mechanisms that regulate these processes have been the basis for many recent studies. Traditionally, leucocyte extravasation had been believed to occur through a paracellular route, which involves localized disruption of endothelial cell junctions. However, more recently, a transcellular route has been described involving the passage through the endothelial cell body. Leucocytes are also able to migrate through epithelium to monitor mucosal tissues and microenvironments. A number of adhesion molecules are known to regulate transmigration of leucocytes through epithelial and endothelial layers. Paracellular and transcellular leucocyte transmigration are regulated by adhesion molecules such as PECAM-1 (platelet-endothelial cell adhesion molecule 1), CD99, VE-cadherin (vascular endothelial cadherin) and JAM (junctional adhesion molecule) proteins. The purpose of this review is to discuss the role of these molecules in leucocyte transmigration and how they contribute to the different mechanisms that regulate leucocyte trafficking.


Assuntos
Movimento Celular/imunologia , Células Endoteliais/imunologia , Células Epiteliais/imunologia , Junções Intercelulares/imunologia , Leucócitos/imunologia , Animais , Moléculas de Adesão Celular/imunologia , Humanos , Modelos Imunológicos
8.
Blood ; 110(7): 2545-55, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17625065

RESUMO

Monocyte recruitment from the vasculature involves sequential engagement of multiple receptors, culminating in transendothelial migration and extravasation. Junctional adhesion molecule-C (JAM-C) is localized at endothelial intercellular junctions and plays a role in monocyte transmigration. Here, we show that blockade of JAM-B/-C interaction reduced monocyte numbers in the extravascular compartment through increased reverse transmigration rather than by reduced transmigration. This was confirmed in vivo, showing that an anti-JAM-C antibody reduced the number of monocytes in inflammatory tissue and increased the number of monocytes with a reverse-transmigratory phenotype in the peripheral blood. All together, our results suggest a novel mechanism of reducing accumulation of monocytes at inflammation sites by disruption of JAM-C-mediated monocyte retention.


Assuntos
Moléculas de Adesão Celular/metabolismo , Movimento Celular , Monócitos/citologia , Monócitos/metabolismo , Animais , Anticorpos/imunologia , Plaquetas/metabolismo , Adesão Celular , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/imunologia , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Moléculas de Adesão Juncional , Camundongos , Camundongos Transgênicos , Fenótipo
9.
J Immunol ; 178(9): 5879-87, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17442972

RESUMO

Endothelial cell junctional adhesion molecule (JAM)-C has been proposed to regulate neutrophil migration. In the current study, we used function-blocking mAbs against human JAM-C to determine its role in human leukocyte adhesion and transendothelial cell migration under flow conditions. JAM-C surface expression in HUVEC was uniformly low, and treatment with inflammatory cytokines TNF-alpha, IL-1beta, or LPS did not increase its surface expression as assessed by FACS analysis. By immunofluorescence microscopy, JAM-C staining showed sparse localization to cell-cell junctions on resting or cytokine-activated HUVEC. Surprisingly, staining of detergent-permeabilized HUVEC revealed a large intracellular pool of JAM-C that showed little colocalization with von Willebrand factor. Adhesion studies in an in vitro flow model showed that functional blocking JAM-C mAb alone had no inhibitory effect on polymorphonuclear leukocyte (PMN) adhesion or transmigration, whereas mAb to ICAM-1 significantly reduced transmigration. Interestingly, JAM-C-blocking mAbs synergized with a combination of PECAM-1, ICAM-1, and CD99-blocking mAbs to inhibit PMN transmigration. Overexpression of JAM-C by infection with a lentivirus JAM-C GFP fusion protein did not increase adhesion or extent of transmigration of PMN or evoke a role for JAM-C in transendothelial migration. These data suggest that JAM-C has a minimal role, if any, in PMN transmigration in this model and that ICAM-1 is the preferred endothelial-expressed ligand for PMN beta(2) integrins during transendothelial migration.


Assuntos
Moléculas de Adesão Celular/metabolismo , Movimento Celular , Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo , Neutrófilos/imunologia , Animais , Anticorpos Bloqueadores/farmacologia , Anticorpos Monoclonais/farmacologia , Antígenos CD18/metabolismo , Adesão Celular , Moléculas de Adesão Celular/antagonistas & inibidores , Moléculas de Adesão Celular/imunologia , Imunoglobulinas/imunologia , Molécula 1 de Adesão Intercelular/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-1beta/farmacologia , Infecções por Lentivirus/imunologia , Lipopolissacarídeos/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/imunologia , Camundongos , Neutrófilos/efeitos dos fármacos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/efeitos dos fármacos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Resistência ao Cisalhamento , Fator de Necrose Tumoral alfa/farmacologia
10.
Arthritis Rheum ; 48(9): 2472-82, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-13130466

RESUMO

OBJECTIVE: A characteristic feature of the inflammatory infiltrate in rheumatoid arthritis is the segregation of CD4 and CD8 T lymphocyte subsets into distinct microdomains within the inflamed synovium. The aim of this study was to test the hypothesis that chemokines in general and stromal cell-derived factor 1 (SDF-1; CXCL12) in particular are responsible for generating this distinctive microcompartmentalization. METHODS: We examined how synovial CD4/CD8 T cell subsets interacted in coculture assays with fibroblasts derived from chronic inflammatory synovial lesions and normal synovial tissue as well as from fetal lung and adult skin. We used the ability of T cells to migrate beneath fibroblasts (a process called pseudoemperipolesis) as an in vitro marker of T cell accumulation within synovial tissue. RESULTS: Rheumatoid fibroblast-like synoviocytes (FLS) displayed a unique ability to support high levels of CD4 and CD8 T cell pseudoemperipolesis. Nonrheumatoid FLS as well as fetal lung fibroblasts supported low levels of pseudoemperipolesis, while skin-derived fibroblasts were unable to do so. CD8 T cells migrated under fibroblasts more efficiently and at a higher velocity than CD4 T cells, a feature that was intrinsic to CD8 T cells. Rheumatoid fibroblasts constitutively produced high levels of SDF-1 (CXCL12), which was functionally important, since blocking studies showed reductions in T cell pseudoemperipolesis to levels seen in nonrheumatoid FLS. Rheumatoid fibroblasts also constitutively produced high levels of vascular cell adhesion molecule 1 (VCAM-1; CD106), but this did not contribute to T cell pseudoemperipolesis, unlike the case for B cells, which require SDF-1 (CXCL12)-CXCR4 and CD49d-VCAM-1 (CD106) interactions. Importantly, only combinations of rheumatoid FLS and rheumatoid-derived synovial fluid T cells supported pseudoemperipolesis when examined ex vivo, confirming the in vivo relevance of these findings. CONCLUSION: These studies demonstrate that features intrinsic to both fibroblasts (the production of SDF-1) and CD8/CD4 T cells (the expression of CXCR4) are responsible for the characteristic pattern of T lymphocyte accumulation seen in the rheumatoid synovium. These findings suggest that the SDF-1/CXCR4 ligand/receptor pair is likely to play an important functional role in T lymphocyte accumulation and positioning within the rheumatoid synovium.


Assuntos
Artrite Reumatoide/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Movimento Celular/imunologia , Quimiocinas CXC/metabolismo , Membrana Sinovial/imunologia , Artrite Reumatoide/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL12 , Quimiocinas CXC/genética , Fibroblastos/imunologia , Fibroblastos/metabolismo , Expressão Gênica/imunologia , Humanos , Toxina Pertussis/farmacologia , Receptores CXCR4/metabolismo , Células Estromais/imunologia , Células Estromais/metabolismo , Membrana Sinovial/citologia , Membrana Sinovial/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA