Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Lancet ; 382(9894): 790-6, 2013 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-23755828

RESUMO

BACKGROUND: VKORC1 and CYP2C9 are important contributors to warfarin dose variability, but explain less variability for individuals of African descent than for those of European or Asian descent. We aimed to identify additional variants contributing to warfarin dose requirements in African Americans. METHODS: We did a genome-wide association study of discovery and replication cohorts. Samples from African-American adults (aged ≥18 years) who were taking a stable maintenance dose of warfarin were obtained at International Warfarin Pharmacogenetics Consortium (IWPC) sites and the University of Alabama at Birmingham (Birmingham, AL, USA). Patients enrolled at IWPC sites but who were not used for discovery made up the independent replication cohort. All participants were genotyped. We did a stepwise conditional analysis, conditioning first for VKORC1 -1639G→A, followed by the composite genotype of CYP2C9*2 and CYP2C9*3. We prespecified a genome-wide significance threshold of p<5×10(-8) in the discovery cohort and p<0·0038 in the replication cohort. FINDINGS: The discovery cohort contained 533 participants and the replication cohort 432 participants. After the prespecified conditioning in the discovery cohort, we identified an association between a novel single nucleotide polymorphism in the CYP2C cluster on chromosome 10 (rs12777823) and warfarin dose requirement that reached genome-wide significance (p=1·51×10(-8)). This association was confirmed in the replication cohort (p=5·04×10(-5)); analysis of the two cohorts together produced a p value of 4·5×10(-12). Individuals heterozygous for the rs12777823 A allele need a dose reduction of 6·92 mg/week and those homozygous 9·34 mg/week. Regression analysis showed that the inclusion of rs12777823 significantly improves warfarin dose variability explained by the IWPC dosing algorithm (21% relative improvement). INTERPRETATION: A novel CYP2C single nucleotide polymorphism exerts a clinically relevant effect on warfarin dose in African Americans, independent of CYP2C9*2 and CYP2C9*3. Incorporation of this variant into pharmacogenetic dosing algorithms could improve warfarin dose prediction in this population. FUNDING: National Institutes of Health, American Heart Association, Howard Hughes Medical Institute, Wisconsin Network for Health Research, and the Wellcome Trust.


Assuntos
Anticoagulantes/administração & dosagem , Hidrocarboneto de Aril Hidroxilases/genética , Negro ou Afro-Americano/genética , Polimorfismo de Nucleotídeo Único/genética , Varfarina/administração & dosagem , Alelos , Anticoagulantes/farmacocinética , Citocromo P-450 CYP2C9 , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Oxigenases de Função Mista/genética , Vitamina K Epóxido Redutases , Varfarina/farmacocinética
2.
BioData Min ; 8: 15, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25969697

RESUMO

BACKGROUND: Biorepositories linked to de-identified electronic medical records (EMRs) have the potential to complement traditional epidemiologic studies in genotype-phenotype studies of complex human diseases and traits. A major challenge in meeting this potential is the use of EMR-derived data to extract phenotypes and covariates for genetic association studies. Unlike traditional epidemiologic data, EMR-derived data are collected for clinical care and are therefore highly variable across patients. The variability of clinical data coupled with the challenges associated with searching unstructured clinical notes requires the development of algorithms to extract phenotypes for analysis. Given the number of possible algorithms that could be developed for any one EMR-derived phenotype, we explored here the impact algorithm decision logic has on genetic association study results for a single quantitative trait, high density lipoprotein cholesterol (HDL-C). RESULTS: We used five different algorithms to extract HDL-C from African American subjects genotyped on the Illumina Metabochip (n = 11,519) as part of Epidemiologic Architecture for Genes Linked to Environment (EAGLE). Tests of association between HDL-C and genetic risk scores for HDL-C associated variants suggest that the genetic effect size does not vary substantially across the five HDL-C definitions. CONCLUSIONS: These data collectively suggest that, at least for this quantitative trait, algorithm decision logic and phenotyping details do not appreciably impact genetic association study test statistics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA