Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Risk Anal ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807489

RESUMO

In recent years, longer and heavier trains have become more common, primarily driven by efficiency and cost-saving measures in the railroad industry. Regulation of train length is currently under consideration in the United States at both the federal and state levels, because of concerns that longer trains may have a higher risk of derailment, but the relationship between train length and risk of derailment is not yet well understood. In this study, we use data on freight train accidents during the 2013-2022 period from the Federal Railroad Administration (FRA) Rail Equipment Accident and Highway-Rail Grade Crossing Accident databases to estimate the relationship between freight train length and the risk of derailment. We determine that longer trains do have a greater risk of derailment. Based on our analysis, running 100-car trains is associated with 1.11 (95% confidence interval: 1.10-1.12) times the derailment odds of running 50-car trains (or a 11% increase), even accounting for the fact that only half as many 100-car trains would need to run. For 200-car trains, the odds increase by 24% (odds ratio 1.24, 95% confidence interval: 1.20-1.28), again accounting for the need for fewer trains. Understanding derailment risk is an important component for evaluating the overall safety of the rail system and for the future development and regulation of freight rail transportation. Given the limitations of the current data on freight train length, this study provides an important step toward such an understanding.

2.
J Am Chem Soc ; 140(51): 17977-17984, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30540455

RESUMO

Evaluating the nature of chemical bonding for actinide elements represents one of the most important and long-standing problems in actinide science. We directly address this challenge and contribute a Cl K-edge X-ray absorption spectroscopy and relativistic density functional theory study that quantitatively evaluates An-Cl covalency in AnCl62- (AnIV = Th, U, Np, Pu). The results showed significant mixing between Cl 3p- and AnIV 5f- and 6d-orbitals (t1u*/t2u* and t2 g*/eg *), with the 6d-orbitals showing more pronounced covalent bonding than the 5f-orbitals. Moving from Th to U, Np, and Pu markedly changed the amount of M-Cl orbital mixing, such that AnIV 6d - and Cl 3p-mixing decreased and metal 5f - and Cl 3p-orbital mixing increased across this series.

3.
J Am Chem Soc ; 135(5): 1864-71, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23351138

RESUMO

Advancing theories of how metal-oxygen bonding influences metal oxo properties can expose new avenues for innovation in materials science, catalysis, and biochemistry. Historically, spectroscopic analyses of the transition metal MO(4)(x-) anions have formed the basis for new M-O bonding theories. Herein, relative changes in M-O orbital mixing in MO(4)(2-) (M = Cr, Mo, W) and MO(4)(-) (M = Mn, Tc, Re) are evaluated for the first time by nonresonant inelastic X-ray scattering, X-ray absorption spectroscopy using fluorescence and transmission (via a scanning transmission X-ray microscope), and time-dependent density functional theory. The results suggest that moving from Group 6 to Group 7 or down the triads increases M-O e* (π*) mixing; for example, it more than doubles in ReO(4)(-) relative to CrO(4)(2-). Mixing in the t(2)* orbitals (σ* + π*) remains relatively constant within the same Group, but increases on moving from Group 6 to Group 7. These unexpected changes in orbital energy and composition for formally isoelectronic tetraoxometalates are evaluated in terms of periodic trends in d orbital energy and radial extension.


Assuntos
Elétrons , Metais Pesados/química , Oxigênio/química , Teoria Quântica , Microscopia Eletrônica de Transmissão e Varredura , Estrutura Molecular , Espectroscopia por Absorção de Raios X , Raios X
4.
J Am Chem Soc ; 132(39): 13914-21, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20839792

RESUMO

Accurate X-ray absorption spectra (XAS) of first row atoms, e.g., O, are notoriously difficult to obtain due to the extreme sensitivity of the measurement to surface contamination, self-absorption, and saturation affects. Herein, we describe a comprehensive approach for determining reliable O K-edge XAS data for ReO(4)(1-) and provide methodology for obtaining trustworthy and quantitative data on nonconducting molecular systems, even in the presence of surface contamination. This involves comparing spectra measured by nonresonant inelastic X-ray scattering (NRIXS), a bulk-sensitive technique that is not prone to X-ray self-absorption and provides exact peak intensities, with XAS spectra obtained by three different detection modes, namely total electron yield (TEY), fluorescence yield (FY), and scanning transmission X-ray microscopy (STXM). For ReO(4)(1-), TEY measurements were heavily influenced by surface contamination, while the FY and STXM data agree well with the bulk NRIXS analysis. These spectra all showed two intense pre-edge features indicative of the covalent interaction between the Re 5d and O 2p orbitals. Density functional theory calculations were used to assign these two peaks as O 1s excitations to the e and t(2) molecular orbitals that result from Re 5d and O 2p covalent mixing in T(d) symmetry. Electronic structure calculations were used to determine the amount of O 2p character (%) in these molecular orbitals. Time dependent-density functional theory (TD-DFT) was also used to calculate the energies and intensities of the pre-edge transitions. Overall, under these experimental conditions, this analysis suggests that NRIXS, STXM, and FY operate cooperatively, providing a sound basis for validation of bulk-like excitation spectra and, in combination with electronic structure calculations, suggest that NaReO(4) may serve as a well-defined O K-edge energy and intensity standard for future O K-edge XAS studies.

5.
ACS Appl Mater Interfaces ; 3(3): 726-32, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21366246

RESUMO

We study the top surface composition of blends of the conjugated polymer regioregular poly-3-hexylthiophene (P3HT) with the fullerene (6,6)-phenyl-C(61)-butyric acid methyl ester (PCBM), an important model system for organic photovoltaics (OPVs), using near-edge X-ray absorption fine structure spectroscopy (NEXAFS). We compare the ratio of P3HT to PCBM near the air/film interface that results from preparing blend films on two sets of substrates: (1) poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) coated indium tin oxide (ITO) as is commonly used in conventional OPV structures and (2) ZnO substrates that are either unmodified or modified with a C(60)-like self-assembled monolayer, similar to those that have been recently reported in inverted OPV structures. We find that the top surface (the film/air interface) is enriched in P3HT compared to the bulk, regardless of substrate or annealing conditions, indicating that changes in device performance due to substrate modification treatments should be attributed to the buried substrate/film interface and the bulk of the film rather than the exposed film/air interface.


Assuntos
Eletrodos , Fulerenos/química , Polímeros/química , Tiofenos/química , Difração de Raios X/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA