Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 600(7890): 695-700, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34880504

RESUMO

Surveys are a crucial tool for understanding public opinion and behaviour, and their accuracy depends on maintaining statistical representativeness of their target populations by minimizing biases from all sources. Increasing data size shrinks confidence intervals but magnifies the effect of survey bias: an instance of the Big Data Paradox1. Here we demonstrate this paradox in estimates of first-dose COVID-19 vaccine uptake in US adults from 9 January to 19 May 2021 from two large surveys: Delphi-Facebook2,3 (about 250,000 responses per week) and Census Household Pulse4 (about 75,000 every two weeks). In May 2021, Delphi-Facebook overestimated uptake by 17 percentage points (14-20 percentage points with 5% benchmark imprecision) and Census Household Pulse by 14 (11-17 percentage points with 5% benchmark imprecision), compared to a retroactively updated benchmark the Centers for Disease Control and Prevention published on 26 May 2021. Moreover, their large sample sizes led to miniscule margins of error on the incorrect estimates. By contrast, an Axios-Ipsos online panel5 with about 1,000 responses per week following survey research best practices6 provided reliable estimates and uncertainty quantification. We decompose observed error using a recent analytic framework1 to explain the inaccuracy in the three surveys. We then analyse the implications for vaccine hesitancy and willingness. We show how a survey of 250,000 respondents can produce an estimate of the population mean that is no more accurate than an estimate from a simple random sample of size 10. Our central message is that data quality matters more than data quantity, and that compensating the former with the latter is a mathematically provable losing proposition.


Assuntos
Vacinas contra COVID-19/administração & dosagem , Pesquisas sobre Atenção à Saúde , Vacinação/estatística & dados numéricos , Benchmarking , Viés , Big Data , COVID-19/epidemiologia , COVID-19/prevenção & controle , Centers for Disease Control and Prevention, U.S. , Conjuntos de Dados como Assunto/normas , Feminino , Pesquisas sobre Atenção à Saúde/normas , Humanos , Masculino , Projetos de Pesquisa , Tamanho da Amostra , Mídias Sociais , Estados Unidos/epidemiologia , Hesitação Vacinal/estatística & dados numéricos
2.
Science ; 371(6536)2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33531384

RESUMO

After initial declines, in mid-2020 a resurgence in transmission of novel coronavirus disease (COVID-19) occurred in the United States and Europe. As efforts to control COVID-19 disease are reintensified, understanding the age demographics driving transmission and how these affect the loosening of interventions is crucial. We analyze aggregated, age-specific mobility trends from more than 10 million individuals in the United States and link these mechanistically to age-specific COVID-19 mortality data. We estimate that as of October 2020, individuals aged 20 to 49 are the only age groups sustaining resurgent SARS-CoV-2 transmission with reproduction numbers well above one and that at least 65 of 100 COVID-19 infections originate from individuals aged 20 to 49 in the United States. Targeting interventions-including transmission-blocking vaccines-to adults aged 20 to 49 is an important consideration in halting resurgent epidemics and preventing COVID-19-attributable deaths.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Epidemias , Adolescente , Adulto , Fatores Etários , Número Básico de Reprodução , COVID-19/mortalidade , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Telefone Celular , Criança , Pré-Escolar , Controle de Doenças Transmissíveis , Epidemias/prevenção & controle , Humanos , Lactente , Pessoa de Meia-Idade , Modelos Teóricos , Pandemias/prevenção & controle , Instituições Acadêmicas , Estados Unidos/epidemiologia , Adulto Jovem
3.
Nat Commun ; 11(1): 6189, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273462

RESUMO

As of 1st June 2020, the US Centres for Disease Control and Prevention reported 104,232 confirmed or probable COVID-19-related deaths in the US. This was more than twice the number of deaths reported in the next most severely impacted country. We jointly model the US epidemic at the state-level, using publicly available death data within a Bayesian hierarchical semi-mechanistic framework. For each state, we estimate the number of individuals that have been infected, the number of individuals that are currently infectious and the time-varying reproduction number (the average number of secondary infections caused by an infected person). We use changes in mobility to capture the impact that non-pharmaceutical interventions and other behaviour changes have on the rate of transmission of SARS-CoV-2. We estimate that Rt was only below one in 23 states on 1st June. We also estimate that 3.7% [3.4%-4.0%] of the total population of the US had been infected, with wide variation between states, and approximately 0.01% of the population was infectious. We demonstrate good 3 week model forecasts of deaths with low error and good coverage of our credible intervals.


Assuntos
COVID-19/epidemiologia , Pandemias/estatística & dados numéricos , Teorema de Bayes , COVID-19/transmissão , Humanos , Modelos Estatísticos , Estados Unidos/epidemiologia , Viroses/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA