Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Cell ; 169(1): 72-84.e13, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340352

RESUMO

Multiple sclerosis (MS) is an autoimmune disorder where T cells attack neurons in the central nervous system (CNS) leading to demyelination and neurological deficits. A driver of increased MS risk is the soluble form of the interleukin-7 receptor alpha chain gene (sIL7R) produced by alternative splicing of IL7R exon 6. Here, we identified the RNA helicase DDX39B as a potent activator of this exon and consequently a repressor of sIL7R, and we found strong genetic association of DDX39B with MS risk. Indeed, we showed that a genetic variant in the 5' UTR of DDX39B reduces translation of DDX39B mRNAs and increases MS risk. Importantly, this DDX39B variant showed strong genetic and functional epistasis with allelic variants in IL7R exon 6. This study establishes the occurrence of biological epistasis in humans and provides mechanistic insight into the regulation of IL7R exon 6 splicing and its impact on MS risk.


Assuntos
RNA Helicases DEAD-box/metabolismo , Epistasia Genética , Subunidade alfa de Receptor de Interleucina-7/genética , Splicing de RNA , RNA Helicases DEAD-box/genética , Éxons , Células HeLa , Humanos , Esclerose Múltipla/genética , Biossíntese de Proteínas , RNA Interferente Pequeno/metabolismo , Linfócitos T/imunologia
2.
Mol Cell ; 78(4): 624-640.e7, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32380061

RESUMO

The primary interactions between incoming viral RNA genomes and host proteins are crucial to infection and immunity. Until now, the ability to study these events was lacking. We developed viral cross-linking and solid-phase purification (VIR-CLASP) to characterize the earliest interactions between viral RNA and cellular proteins. We investigated the infection of human cells using Chikungunya virus (CHIKV) and influenza A virus and identified hundreds of direct RNA-protein interactions. Here, we explore the biological impact of three protein classes that bind CHIKV RNA within minutes of infection. We find CHIKV RNA binds and hijacks the lipid-modifying enzyme fatty acid synthase (FASN) for pro-viral activity. We show that CHIKV genomes are N6-methyladenosine modified, and YTHDF1 binds and suppresses CHIKV replication. Finally, we find that the innate immune DNA sensor IFI16 associates with CHIKV RNA, reducing viral replication and maturation. Our findings have direct applicability to the investigation of potentially all RNA viruses.


Assuntos
Febre de Chikungunya/virologia , Vírus Chikungunya/fisiologia , Ácido Graxo Sintase Tipo I/metabolismo , Genoma Viral , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Replicação Viral , Animais , Febre de Chikungunya/genética , Febre de Chikungunya/metabolismo , Chlorocebus aethiops , Ácido Graxo Sintase Tipo I/genética , Células HEK293 , Humanos , Proteínas Nucleares/genética , Fosfoproteínas/genética , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Células Vero
3.
RNA ; 28(8): 1058-1073, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35613883

RESUMO

The interleukin 7 receptor (IL7R) is strongly associated with increased risk to develop multiple sclerosis (MS), an autoimmune disease of the central nervous system, and this association is likely driven by up-regulation of the soluble isoform of IL7R (sIL7R). Expression of sIL7R is determined by exclusion of the alternative exon 6 from IL7R transcripts, and our previous work revealed that the MS risk allele of the SNP rs6897932 within this exon enhances the expression of sIL7R by promoting exclusion of exon 6. sIL7R potentiates the activity of IL7, leading to enhanced expansion of T cells and increased disability in the experimental autoimmune encephalomyelitis (EAE) murine model of MS. This role in modulating T cell-driven immunity positions sIL7R as an attractive therapeutic target whose expression could be reduced for treatment of MS or increased for treatment of cancers. In this study, we identified novel antisense oligonucleotides (ASOs) that effectively control the inclusion (anti-sIL7R ASOs) or exclusion (pro-sIL7R ASOs) of this exon in a dose-dependent fashion. These ASOs provided excellent control of exon 6 splicing and sIL7R secretion in human primary CD4+ T cells. Supporting their potential for therapeutic targeting, we showed that lead anti-sIL7R ASOs correct the enhanced exon 6 exclusion imposed by the MS risk allele of rs6897932, whereas lead pro-sIL7R ASOs phenocopy it. The data presented here form the foundation for future preclinical studies that will test the therapeutic potential of these ASOs in MS and immuno-oncology.


Assuntos
Linfócitos T CD4-Positivos , Esclerose Múltipla , Receptores de Interleucina-7 , Animais , Éxons , Humanos , Camundongos , Esclerose Múltipla/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Splicing de RNA , Receptores de Interleucina-7/genética , Linfócitos T
4.
RNA ; 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568552

RESUMO

Interleukin 7 receptor α-chain is crucial for the development and maintenance of T cells and is genetically associated with autoimmune disorders including multiple sclerosis (MS), a demyelinating disease of the CNS. Exon 6 of IL7R encodes for the transmembrane domain of the receptor and is regulated by alternative splicing: inclusion or skipping of IL7R exon 6 results in membrane-bound or soluble IL7R isoforms, respectively. We previously identified a SNP (rs6897932) in IL7R exon 6, strongly associated with MS risk and showed that the risk allele (C) increases skipping of the exon, resulting in elevated levels of sIL7R. This has important pathological consequences as elevated levels of sIL7R has been shown to exacerbate the disease in the experimental autoimmune encephalomyelitis mouse model of MS. Understanding the regulation of exon 6 splicing provides important mechanistic insights into the pathogenesis of MS. Here we report two mechanisms by which IL7R exon 6 is controlled. First, a competition between PTBP1 and U2AF2 at the polypyrimidine tract (PPT) of intron 5, and second, an unexpected U2AF2-mediated assembly of spicing factors in the exon. We noted the presence of a branchpoint sequence (BPS) (TACTAAT or TACTAAC) within exon 6, which is stronger with the C allele. We also noted that the BPS is followed by a PPT and conjectured that silencing could be mediated by the binding of U2AF2 to that tract. In support of this model, we show that evolutionary conservation of the exonic PPT correlates well with the degree of alternative splicing of exon 6 in two non-human primate species and that U2AF2 binding to this PPT recruits U2 snRNP components to the exon. These observations provide the first explanation for the stronger silencing of IL7R exon 6 with the disease associated C allele at rs6897932.

5.
J Proteome Res ; 21(8): 2055-2062, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35787094

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the ongoing coronavirus disease 2019 (COVID-19) pandemic. Here we report a novel strategy for the rapid detection of SARS-CoV-2 based on an enrichment approach exploiting the affinity between the virus and cellulose sulfate ester functional groups, hot acid hydrolysis, and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Virus samples were enriched using cellulose sulfate ester microcolumns. Virus peptides were prepared using the hot acid aspartate-selective hydrolysis and characterized by MALDI-TOF MS. Collected spectra were processed with a peptide fingerprint algorithm, and searching parameters were optimized for the detection of SARS-CoV-2. These peptides provide high sequence coverage for nucleocapsid (N protein) and allow confident identification of SARS-CoV-2. Peptide markers contributing to the detection were rigorously identified using bottom-up proteomics. The approach demonstrated in this study holds the potential for developing a rapid assay for COVID-19 diagnosis and detecting virus variants from a variety of sources, such as sewage and nasal swabs.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Celulose/análogos & derivados , Ésteres , Humanos , Peptídeos/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
6.
RNA ; 26(7): 888-901, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32238481

RESUMO

RNAs that are 5'-truncated versions of a longer RNA but share the same 3' terminus can be generated by alternative promoters in transcription of cellular mRNAs or by replicating RNA viruses. These truncated RNAs cannot be distinguished from the longer RNA by a simple two-primer RT-PCR because primers that anneal to the cDNA from the smaller RNA also anneal to-and amplify-the longer RNA-derived cDNA. Thus, laborious methods, such as northern blot hybridization, are used to distinguish shorter from longer RNAs. For rapid, low-cost, and specific detection of these truncated RNAs, we report detection of smaller coterminal RNA by PCR (DeSCo-PCR). DeSCo-PCR uses a nonextendable blocking primer (BP), which outcompetes a forward primer (FP) for annealing to longer RNA-derived cDNA, while FP outcompetes BP for annealing to shorter RNA-derived cDNA. In the presence of BP, FP, and the reverse primer, only cDNA from the shorter RNA is amplified in a single-tube reaction containing both RNAs. Many positive strand RNA viruses generate 5'-truncated forms of the genomic RNA (gRNA) called subgenomic RNAs (sgRNA), which play key roles in viral gene expression and pathogenicity. We demonstrate that DeSCo-PCR is easily optimized to selectively detect relative quantities of sgRNAs of red clover necrotic mosaic virus from plants and Zika virus from human cells, each infected with viral strains that generate different amounts of sgRNA. This technique should be readily adaptable to other sgRNA-producing viruses, and for quantitative detection of any truncated or alternatively spliced RNA.


Assuntos
Genoma Viral/genética , Reação em Cadeia da Polimerase/métodos , RNA Viral/genética , Processamento Alternativo/genética , Linhagem Celular Tumoral , DNA Complementar/genética , Estudos de Avaliação como Assunto , Células HeLa , Humanos , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas/genética , Vírus de RNA/genética , RNA Mensageiro/genética , Tombusviridae/genética , Zika virus/genética , Infecção por Zika virus/virologia
7.
Nucleic Acids Res ; 48(17): 9872-9885, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32890404

RESUMO

The ribosomal stalk proteins, RPLP1 and RPLP2 (RPLP1/2), which form the ancient ribosomal stalk, were discovered decades ago but their functions remain mysterious. We had previously shown that RPLP1/2 are exquisitely required for replication of dengue virus (DENV) and other mosquito-borne flaviviruses. Here, we show that RPLP1/2 function to relieve ribosome pausing within the DENV envelope coding sequence, leading to enhanced protein stability. We evaluated viral and cellular translation in RPLP1/2-depleted cells using ribosome profiling and found that ribosomes pause in the sequence coding for the N-terminus of the envelope protein, immediately downstream of sequences encoding two adjacent transmembrane domains (TMDs). We also find that RPLP1/2 depletion impacts a ribosome density for a small subset of cellular mRNAs. Importantly, the polarity of ribosomes on mRNAs encoding multiple TMDs was disproportionately affected by RPLP1/2 knockdown, implying a role for RPLP1/2 in multi-pass transmembrane protein biogenesis. These analyses of viral and host RNAs converge to implicate RPLP1/2 as functionally important for ribosomes to elongate through ORFs encoding multiple TMDs. We suggest that the effect of RPLP1/2 at TMD associated pauses is mediated by improving the efficiency of co-translational folding and subsequent protein stability.


Assuntos
Fosfoproteínas/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas do Envelope Viral/genética , Células A549 , Animais , Chlorocebus aethiops , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfoproteínas/genética , Domínios Proteicos , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , Células Vero , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo
8.
J Virol ; 93(22)2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31462558

RESUMO

Enteric viruses exploit bacterial components, including lipopolysaccharides (LPS) and peptidoglycan (PG), to facilitate infection in humans. Because of their origin in the bat enteric system, we wondered if severe acute respiratory syndrome coronavirus (SARS-CoV) or Middle East respiratory syndrome CoV (MERS-CoV) also use bacterial components to modulate infectivity. To test this question, we incubated CoVs with LPS and PG and evaluated infectivity, finding no change following LPS treatment. However, PG from Bacillus subtilis reduced infection >10,000-fold, while PG from other bacterial species failed to recapitulate this. Treatment with an alcohol solvent transferred inhibitory activity to the wash, and mass spectrometry revealed surfactin, a cyclic lipopeptide antibiotic, as the inhibitory compound. This antibiotic had robust dose- and temperature-dependent inhibition of CoV infectivity. Mechanistic studies indicated that surfactin disrupts CoV virion integrity, and surfactin treatment of the virus inoculum ablated infection in vivo Finally, similar cyclic lipopeptides had no effect on CoV infectivity, and the inhibitory effect of surfactin extended broadly to enveloped viruses, including influenza, Ebola, Zika, Nipah, chikungunya, Una, Mayaro, Dugbe, and Crimean-Congo hemorrhagic fever viruses. Overall, our results indicate that peptidoglycan-associated surfactin has broad viricidal activity and suggest that bacteria by-products may negatively modulate virus infection.IMPORTANCE In this article, we consider a role for bacteria in shaping coronavirus infection. Taking cues from studies of enteric viruses, we initially investigated how bacterial surface components might improve CoV infection. Instead, we found that peptidoglycan-associated surfactin is a potent viricidal compound that disrupts virion integrity with broad activity against enveloped viruses. Our results indicate that interactions with commensal bacterial may improve or disrupt viral infections, highlighting the importance of understanding these microbial interactions and their implications for viral pathogenesis and treatment.


Assuntos
Lipopeptídeos/farmacologia , Peptídeos Cíclicos/farmacologia , Peptidoglicano/metabolismo , Vírus de RNA/efeitos dos fármacos , Animais , Linhagem Celular , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Flaviviridae/efeitos dos fármacos , Lipopeptídeos/imunologia , Lipopeptídeos/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , Peptídeos Cíclicos/imunologia , Peptídeos Cíclicos/metabolismo , Peptidoglicano/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/metabolismo , Síndrome Respiratória Aguda Grave/virologia , Células Vero , Viroses/metabolismo
9.
Virol J ; 17(1): 60, 2020 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-32334603

RESUMO

The genus Flavivirus encompasses several worldwide-distributed arthropod-borne viruses including, dengue virus, Japanese encephalitis virus, West Nile virus, yellow fever virus, Zika virus, and tick-borne encephalitis virus. Infection with these viruses manifest with symptoms ranging from febrile illness to life- threatening hypotensive shock and encephalitis. Therefore, flaviviruses pose a great risk to public health. Currently, preventive measures are falling short to control epidemics and there are no antivirals against any Flavivirus.Flaviviruses carry a single stranded positive-sense RNA genome that plays multiple roles in infected cells: it is translated into viral proteins, used as template for genome replication, it is the precursor of the subgenomic flaviviral RNA and it is assembled into new virions. Furthermore, viral RNA genomes are also packaged into extracellular vesicles, e.g. exosomes, which represent an alternate mode of virus dissemination.Because RNA molecules are at the center of Flavivirus replication cycle, viral and host RNA-binding proteins (RBPs) are critical determinants of infection. Numerous studies have revealed the function of RBPs during Flavivirus infection, particularly at the level of RNA translation and replication. These proteins, however, are also critical participants at the late stages of the replication cycle. Here we revise the function of host RBPs and the viral proteins capsid, NS2A and NS3, during the packaging of viral RNA and the assembly of new virus particles. Furthermore, we go through the evidence pointing towards the importance of host RBPs in mediating cellular RNA export with the idea that the biogenesis of exosomes harboring Flavivirus RNA would follow an analogous pathway.


Assuntos
Flavivirus/fisiologia , Interações Hospedeiro-Patógeno/genética , Proteínas de Ligação a RNA/metabolismo , Replicação Viral , Flavivirus/genética , Infecções por Flavivirus/virologia , Genoma Viral , Humanos , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Proteínas Virais/genética
10.
Chem Rev ; 118(8): 4448-4482, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29652486

RESUMO

Flaviviruses, such as dengue, Japanese encephalitis, tick-borne encephalitis, West Nile, yellow fever, and Zika viruses, are critically important human pathogens that sicken a staggeringly high number of humans every year. Most of these pathogens are transmitted by mosquitos, and not surprisingly, as the earth warms and human populations grow and move, their geographic reach is increasing. Flaviviruses are simple RNA-protein machines that carry out protein synthesis, genome replication, and virion packaging in close association with cellular lipid membranes. In this review, we examine the molecular biology of flaviviruses touching on the structure and function of viral components and how these interact with host factors. The latter are functionally divided into pro-viral and antiviral factors, both of which, not surprisingly, include many RNA binding proteins. In the interface between the virus and the hosts we highlight the role of a noncoding RNA produced by flaviviruses to impair antiviral host immune responses. Throughout the review, we highlight areas of intense investigation, or a need for it, and potential targets and tools to consider in the important battle against pathogenic flaviviruses.


Assuntos
Flavivirus/fisiologia , Flavivirus/classificação , Flavivirus/genética , Flavivirus/metabolismo , Genes Virais , Interações Hospedeiro-Patógeno , Humanos , Proteínas de Ligação a RNA/metabolismo , Replicação Viral
11.
RNA Biol ; 17(3): 366-380, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31829086

RESUMO

Quaking (QKI) is an RNA-binding protein (RBP) involved in multiple aspects of RNA metabolism and many biological processes. Despite a known immune function in regulating monocyte differentiation and inflammatory responses, the degree to which QKI regulates the host interferon (IFN) response remains poorly characterized. Here we show that QKI ablation enhances poly(I:C) and viral infection-induced IFNß transcription. Characterization of IFN-related signalling cascades reveals that QKI knockout results in higher levels of IRF3 phosphorylation. Interestingly, complementation with QKI-5 isoform alone is sufficient to rescue this phenotype and reduce IRF3 phosphorylation. Further analysis shows that MAVS, but not RIG-I or MDA5, is robustly upregulated in the absence of QKI, suggesting that QKI downregulates MAVS and thus represses the host IFN response. As expected, MAVS depletion reduces IFNß activation and knockout of MAVS in the QKI knockout cells completely abolishes IFNß induction. Consistently, ectopic expression of RIG-I activates stronger IFNß induction via MAVS-IRF3 pathway in the absence of QKI. Collectively, these findings demonstrate a novel role for QKI in negatively regulating host IFN response by reducing MAVS levels.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Interferon Tipo I/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/genética , Fosforilação , Poli I-C/genética , Poli I-C/metabolismo , Proteínas de Ligação a RNA/genética , Infecções por Respirovirus/metabolismo , Vírus Sendai/patogenicidade
12.
Genome Res ; 26(10): 1411-1416, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27516621

RESUMO

Cultured neuronal networks monitored with microelectrode arrays (MEAs) have been used widely to evaluate pharmaceutical compounds for potential neurotoxic effects. A newer application of MEAs has been in the development of in vitro models of neurological disease. Here, we directly evaluated the utility of MEAs to recapitulate in vivo phenotypes of mature microRNA-128 (miR-128) deficiency, which causes fatal seizures in mice. We show that inhibition of miR-128 results in significantly increased neuronal activity in cultured neuronal networks derived from primary mouse cortical neurons. These results support the utility of MEAs in developing in vitro models of neuroexcitability disorders, such as epilepsy, and further suggest that MEAs provide an effective tool for the rapid identification of microRNAs that promote seizures when dysregulated.


Assuntos
Potenciais de Ação , MicroRNAs/genética , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Convulsões/genética , Análise Serial de Tecidos/métodos , Animais , Células Cultivadas , Córtex Cerebral/citologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Convulsões/fisiopatologia
13.
J Virol ; 92(7)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321322

RESUMO

A primary question in dengue virus (DENV) biology is the molecular strategy for recruitment of host cell protein synthesis machinery. Here, we combined cell fractionation, ribosome profiling, and transcriptome sequencing (RNA-seq) to investigate the subcellular organization of viral genome translation and replication as well as host cell translation and its response to DENV infection. We report that throughout the viral life cycle, DENV plus- and minus-strand RNAs were highly partitioned to the endoplasmic reticulum (ER), identifying the ER as the primary site of DENV translation. DENV infection was accompanied by an ER compartment-specific remodeling of translation, where ER translation capacity was subverted from host transcripts to DENV plus-strand RNA, particularly at late stages of infection. Remarkably, translation levels and patterns in the cytosol compartment were only modestly affected throughout the experimental time course of infection. Comparisons of ribosome footprinting densities of the DENV plus-strand RNA and host mRNAs indicated that DENV plus-strand RNA was only sparsely loaded with ribosomes. Combined, these observations suggest a mechanism where ER-localized translation and translational control mechanisms, likely cis encoded, are used to repurpose the ER for DENV virion production. Consistent with this view, we found ER-linked cellular stress response pathways commonly associated with viral infection, namely, the interferon response and unfolded protein response, to be only modestly activated during DENV infection. These data support a model where DENV reprograms the ER protein synthesis and processing environment to promote viral survival and replication while minimizing the activation of antiviral and proteostatic stress response pathways.IMPORTANCE DENV, a prominent human health threat with no broadly effective or specific treatment, depends on host cell translation machinery for viral replication, immune evasion, and virion biogenesis. The molecular mechanism by which DENV commandeers the host cell protein synthesis machinery and the subcellular organization of DENV replication and viral protein synthesis is poorly understood. Here, we report that DENV has an almost exclusively ER-localized life cycle, with viral replication and translation largely restricted to the ER. Surprisingly, DENV infection largely affects only ER-associated translation, with relatively modest effects on host cell translation in the cytosol. DENV RNA translation is very inefficient, likely representing a strategy to minimize disruption of ER proteostasis. Overall these findings demonstrate that DENV has evolved an ER-compartmentalized life cycle; thus, targeting the molecular signatures and regulation of the DENV-ER interaction landscape may reveal strategies for therapeutic intervention.


Assuntos
Vírus da Dengue/fisiologia , Dengue/imunologia , Retículo Endoplasmático/imunologia , Evasão da Resposta Imune , Biossíntese de Proteínas/imunologia , RNA Mensageiro/imunologia , RNA Viral/imunologia , Replicação Viral/imunologia , Linhagem Celular Tumoral , Dengue/patologia , Retículo Endoplasmático/patologia , Retículo Endoplasmático/virologia , Humanos , Interferons/imunologia , Resposta a Proteínas não Dobradas/imunologia
14.
PLoS Pathog ; 13(7): e1006535, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28753642

RESUMO

Globally re-emerging dengue viruses are transmitted from human-to-human by Aedes mosquitoes. While viral determinants of human pathogenicity have been defined, there is a lack of knowledge of how dengue viruses influence mosquito transmission. Identification of viral determinants of transmission can help identify isolates with high epidemiological potential. Additionally, mechanistic understanding of transmission will lead to better understanding of how dengue viruses harness evolution to cycle between the two hosts. Here, we identified viral determinants of transmission and characterized mechanisms that enhance production of infectious saliva by inhibiting immunity specifically in salivary glands. Combining oral infection of Aedes aegypti mosquitoes and reverse genetics, we identified two 3' UTR substitutions in epidemic isolates that increased subgenomic flaviviral RNA (sfRNA) quantity, infectious particles in salivary glands and infection rate of saliva, which represents a measure of transmission. We also demonstrated that various 3'UTR modifications similarly affect sfRNA quantity in both whole mosquitoes and human cells, suggesting a shared determinism of sfRNA quantity. Furthermore, higher relative quantity of sfRNA in salivary glands compared to midgut and carcass pointed to sfRNA function in salivary glands. We showed that the Toll innate immune response was preferentially inhibited in salivary glands by viruses with the 3'UTR substitutions associated to high epidemiological fitness and high sfRNA quantity, pointing to a mechanism for higher saliva infection rate. By determining that sfRNA is an immune suppressor in a tissue relevant to mosquito transmission, we propose that 3'UTR/sfRNA sequence evolution shapes dengue epidemiology not only by influencing human pathogenicity but also by increasing mosquito transmission, thereby revealing a viral determinant of epidemiological fitness that is shared between the two hosts.


Assuntos
Aedes/imunologia , Aedes/virologia , Vírus da Dengue/fisiologia , Dengue/transmissão , Insetos Vetores/imunologia , Insetos Vetores/virologia , Animais , Dengue/virologia , Vírus da Dengue/genética , Humanos , RNA Viral/genética , RNA Viral/metabolismo , Glândulas Salivares/imunologia , Glândulas Salivares/virologia , Replicação Viral
15.
Curr Top Microbiol Immunol ; 419: 43-67, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28688087

RESUMO

Identification and analysis of viral host factors is a growing area of research which aims to understand the how viruses molecularly interface with the host cell. Investigations into flavivirus-host interactions has led to new discoveries in viral and cell biology, and will potentially bolster strategies to control the important diseases caused by these pathogens. Here, we address the current knowledge of prominent host factors required for the flavivirus life-cycle and mechanisms by which they promote infection.


Assuntos
Infecções por Flavivirus/metabolismo , Infecções por Flavivirus/virologia , Flavivirus/fisiologia , Interações Hospedeiro-Patógeno , Mosquitos Vetores/virologia , Animais , Flavivirus/patogenicidade , Humanos
16.
J Virol ; 91(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27974556

RESUMO

The Flavivirus genus contains several arthropod-borne viruses that pose global health threats, including dengue viruses (DENV), yellow fever virus (YFV), and Zika virus (ZIKV). In order to understand how these viruses replicate in human cells, we previously conducted genome-scale RNA interference screens to identify candidate host factors. In these screens, we identified ribosomal proteins RPLP1 and RPLP2 (RPLP1/2) to be among the most crucial putative host factors required for DENV and YFV infection. RPLP1/2 are phosphoproteins that bind the ribosome through interaction with another ribosomal protein, RPLP0, to form a structure termed the ribosomal stalk. RPLP1/2 were validated as essential host factors for DENV, YFV, and ZIKV infection in two human cell lines: A549 lung adenocarcinoma and HuH-7 hepatoma cells, and for productive DENV infection of Aedes aegypti mosquitoes. Depletion of RPLP1/2 caused moderate cell-line-specific effects on global protein synthesis, as determined by metabolic labeling. In A549 cells, global translation was increased, while in HuH-7 cells it was reduced, albeit both of these effects were modest. In contrast, RPLP1/2 knockdown strongly reduced early DENV protein accumulation, suggesting a requirement for RPLP1/2 in viral translation. Furthermore, knockdown of RPLP1/2 reduced levels of DENV structural proteins expressed from an exogenous transgene. We postulate that these ribosomal proteins are required for efficient translation elongation through the viral open reading frame. In summary, this work identifies RPLP1/2 as critical flaviviral host factors required for translation. IMPORTANCE: Flaviviruses cause important diseases in humans. Examples of mosquito-transmitted flaviviruses include dengue, yellow fever and Zika viruses. Viruses require a plethora of cellular factors to infect cells, and the ribosome plays an essential role in all viral infections. The ribosome is a complex macromolecular machine composed of RNA and proteins and it is responsible for protein synthesis. We identified two specific ribosomal proteins that are strictly required for flavivirus infection of human cells and mosquitoes: RPLP1 and RPLP2 (RPLP1/2). These proteins are part of a structure known as the ribosomal stalk and help orchestrate the elongation phase of translation. We show that flaviviruses are particularly dependent on the function of RPLP1/2. Our findings suggest that ribosome composition is an important factor for virus translation and may represent a regulatory layer for translation of specific cellular mRNAs.


Assuntos
Infecções por Flavivirus/metabolismo , Infecções por Flavivirus/virologia , Flavivirus/fisiologia , Interações Hospedeiro-Patógeno , Fosfoproteínas/metabolismo , Proteínas Ribossômicas/metabolismo , Proteínas Virais/metabolismo , Aedes/virologia , Animais , Linhagem Celular , Vírus da Dengue/fisiologia , Infecções por Flavivirus/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Fosfoproteínas/química , Fosfoproteínas/genética , Ligação Proteica , Multimerização Proteica , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Replicação Viral , Vírus da Febre Amarela/fisiologia
17.
PLoS Pathog ; 11(3): e1004708, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25747802

RESUMO

We demonstrate that both Hepatitis C virus (HCV) and Bovine Viral Diarrhea virus (BVDV) contain regions in their 5' UTRs that stall and repress the enzymatic activity of the cellular 5'-3' exoribonuclease XRN1, resulting in dramatic changes in the stability of cellular mRNAs. We used biochemical assays, virus infections, and transfection of the HCV and BVDV 5' untranslated regions in the absence of other viral gene products to directly demonstrate the existence and mechanism of this novel host-virus interaction. In the context of HCV infection, we observed globally increased stability of mRNAs resulting in significant increases in abundance of normally short-lived mRNAs encoding a variety of relevant oncogenes and angiogenesis factors. These findings suggest that non-coding regions from multiple genera of the Flaviviridae interfere with XRN1 and impact post-transcriptional processes, causing global dysregulation of cellular gene expression which may promote cell growth and pathogenesis.


Assuntos
Regiões 5' não Traduzidas , Vírus da Diarreia Viral Bovina/patogenicidade , Exorribonucleases/metabolismo , Hepacivirus/patogenicidade , Interações Hospedeiro-Parasita/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Estabilidade de RNA/genética , Replicação Viral/genética , Regiões 5' não Traduzidas/genética , Animais , Western Blotting , Bovinos , Linhagem Celular , Vírus da Diarreia Viral Bovina/genética , Hepacivirus/genética , Humanos , Reação em Cadeia da Polimerase , RNA Mensageiro , Transfecção
18.
Methods ; 91: 13-19, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26276314

RESUMO

The identification of RNA-binding proteins that physically associate with viral RNA molecules during infection can provide insight into the molecular mechanisms of RNA virus replication. Until recently, such RNA-protein interactions have been identified predominantly with the use of in vitro assays that may not accurately reflect associations that occur in the context of a living cell. Here we describe a method for the specific affinity purification of dengue virus RNA and associated proteins using in vivo cross-linking followed by antisense-mediated affinity purification. RNA-binding proteins that specifically co-purify with viral RNA using this method can be identified en masse by mass spectrometry. This strategy can potentially be adapted to the purification of any viral RNA species of interest.


Assuntos
Cromatografia de Afinidade/métodos , Vírus da Dengue/metabolismo , Oligodesoxirribonucleotídeos Antissenso , RNA Viral/isolamento & purificação , Ribonucleoproteínas/isolamento & purificação , Vírus da Dengue/genética , Espectrometria de Massas , RNA Viral/metabolismo , Ribonucleoproteínas/metabolismo
19.
RNA ; 19(8): 1159-69, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23793894

RESUMO

Micro(mi)RNAs are 21- to 23-nt RNAs that regulate multiple biological processes. In association with Argonaute (Ago) proteins and other factors that form the RNA-induced silencing complex (RISC), miRNAs typically bind mRNA 3' untranslated regions (UTRs) and repress protein production through antagonizing translation and transcript stability. For a given mRNA-miRNA interaction, cis-acting RNA elements and trans-acting RNA-binding proteins (RBPs) may influence mRNA fate. This is particularly true of the hepatitis C virus (HCV) genome which interacts with miR-122, an abundant liver miRNA. miR-122 binding to HCV RNA considerably stimulates virus replication in cultured cells and primates, but the mechanism(s) and associated host factors required for enhancement of HCV replication have not been fully elucidated. We recapitulated miR-122-HCV RNA interactions in a cell-free translation system derived from cells that express miR-122. Specifically, lysates produced from HEK-293 cells that inducibly transcribe and process pri-miR-122 were characterized alongside those from isogenic cells lacking miR-122 expression. We observed a stimulatory effect of miR-122 on HCV reporter mRNAs in a manner that depended on expression of miR-122 and intact target sites within the HCV 5' UTR. We took advantage of this system to affinity-purify miR-122-HCV RNP complexes. Similar to functional assays, we found that association of immobilized HCV internal ribosome entry site (IRES) RNA with endogenous Ago2 requires both miR-122 expression and intact miR-122 target sites in cis. This combined approach may be generalizable to affinity purification of miRNP complexes for selected target mRNAs, allowing identification of miRNP components and RBPs that may contribute to regulation.


Assuntos
Hepacivirus/metabolismo , MicroRNAs/metabolismo , Ribonucleoproteínas/isolamento & purificação , Ribonucleoproteínas/metabolismo , Proteínas Virais/isolamento & purificação , Proteínas Virais/metabolismo , Regiões 5' não Traduzidas , Proteínas Argonautas/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Sistema Livre de Células , Células HEK293 , Hepacivirus/genética , Interações Hospedeiro-Patógeno , Humanos , MicroRNAs/genética , RNA Viral/genética , RNA Viral/metabolismo
20.
RNA ; 19(1): 103-15, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23151878

RESUMO

Interleukin 7 receptor, IL7R, is expressed exclusively on cells of the lymphoid lineage, and its expression is crucial for the development and maintenance of T cells. Alternative splicing of IL7R exon 6 results in membrane-bound (exon 6 included) and soluble (exon 6 skipped) IL7R isoforms. Interestingly, the inclusion of exon 6 is affected by a single-nucleotide polymorphism associated with the risk of developing multiple sclerosis. Given the potential association of exon 6 inclusion with multiple sclerosis, we investigated the cis-acting elements and trans-acting factors that regulate exon 6 splicing. We identified multiple exonic and intronic cis-acting elements that impact inclusion of exon 6. Moreover, we utilized RNA affinity chromatography followed by mass spectrometry to identify trans-acting protein factors that bind exon 6 and regulate its splicing. These experiments identified cleavage and polyadenylation specificity factor 1 (CPSF1) among protein-binding candidates. A consensus polyadenylation signal AAUAAA is present in intron 6 of IL7R directly downstream from the 5' splice site. Mutations to this site and CPSF1 knockdown both resulted in an increase in exon 6 inclusion. We found no evidence that this site is used to produce cleaved and polyadenylated mRNAs, suggesting that CPSF1 interaction with intronic IL7R pre-mRNA interferes with spliceosome binding to the exon 6 5' splice site. Our results suggest that competing mRNA splicing and polyadenylation regulate exon 6 inclusion and consequently determine the ratios of soluble to membrane-bound IL7R. This may be relevant for both T cell ontogeny and function and development of multiple sclerosis.


Assuntos
Processamento Alternativo , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Éxons/genética , Receptores de Interleucina-7/genética , Animais , Linhagem Celular , Cromatografia de Afinidade/métodos , Fator de Especificidade de Clivagem e Poliadenilação/genética , Inativação Gênica , Humanos , Íntrons , Espectrometria de Massas , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Mutação , Polimorfismo de Nucleotídeo Único , Isoformas de Proteínas/biossíntese , Sítios de Splice de RNA , RNA Mensageiro/metabolismo , Ratos , Spliceossomos/metabolismo , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA