Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Circ Res ; 130(2): 273-287, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35050691

RESUMO

Rapidly changing and transient protein-protein interactions regulate dynamic cellular processes in the cardiovascular system. Traditional methods, including affinity purification and mass spectrometry, have revealed many macromolecular complexes in cardiomyocytes and the vasculature. Yet these methods often fail to identify in vivo or transient protein-protein interactions. To capture these interactions in living cells and animals with subsequent mass spectrometry identification, enzyme-catalyzed proximity labeling techniques have been developed in the past decade. Although the application of this methodology to cardiovascular research is still in its infancy, the field is developing rapidly, and the promise is substantial. In this review, we outline important concepts and discuss how proximity proteomics has been applied to study physiological and pathophysiological processes relevant to the cardiovascular system.


Assuntos
Miocárdio/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteômica/métodos , Animais , Humanos , Proteoma/genética , Proteoma/metabolismo
2.
Cell Calcium ; 121: 102894, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38728789

RESUMO

TRPV2 voltage-insensitive, calcium-permeable ion channels play important roles in cancer progression, immune response, and neuronal development. Despite TRPV2's physiological impact, underlying endogenous proteins mediating TRPV2 responses and affected signaling pathways remain elusive. Using quantitative peroxidase-catalyzed (APEX2) proximity proteomics we uncover dynamic changes in the TRPV2-proximal proteome and identify calcium signaling and cell adhesion factors recruited to the molecular channel neighborhood in response to activation. Quantitative TRPV2 proximity proteomics further revealed activation-induced enrichment of protein clusters with biological functions in neural and cellular projection. We demonstrate a functional connection between TRPV2 and the neural immunoglobulin cell adhesion molecules NCAM and L1CAM. NCAM and L1CAM stimulation robustly induces TRPV2 [Ca2+]I flux in neuronal PC12 cells and this TRPV2-specific [Ca2+]I flux requires activation of the protein kinase PKCα. TRPV2 expression directly impacts neurite lengths that are modulated by NCAM or L1CAM stimulation. Hence, TRPV2's calcium signaling plays a previously undescribed, yet vital role in cell adhesion, and TRPV2 calcium flux and neurite development are intricately linked via NCAM and L1CAM cell adhesion proteins.


Assuntos
Cálcio , Molécula L1 de Adesão de Célula Nervosa , Moléculas de Adesão de Célula Nervosa , Crescimento Neuronal , Proteoma , Canais de Cátion TRPV , Animais , Humanos , Ratos , Cálcio/metabolismo , Sinalização do Cálcio , Adesão Celular , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Neuritos/metabolismo , Células PC12 , Proteína Quinase C-alfa/metabolismo , Proteoma/metabolismo , Canais de Cátion TRPV/metabolismo , Antígeno CD56/metabolismo
3.
Cell Rep ; 43(6): 114332, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38850533

RESUMO

The B cell receptor (BCR) signals together with a multi-component co-receptor complex to initiate B cell activation in response to antigen binding. Here, we take advantage of peroxidase-catalyzed proximity labeling combined with quantitative mass spectrometry to track co-receptor signaling dynamics in Raji cells from 10 s to 2 h after BCR stimulation. This approach enables tracking of 2,814 proximity-labeled proteins and 1,394 phosphosites and provides an unbiased and quantitative molecular map of proteins recruited to the vicinity of CD19, the signaling subunit of the co-receptor complex. We detail the recruitment kinetics of signaling effectors to CD19 and identify previously uncharacterized mediators of B cell activation. We show that the glutamate transporter SLC1A1 is responsible for mediating rapid metabolic reprogramming and for maintaining redox homeostasis during B cell activation. This study provides a comprehensive map of BCR signaling and a rich resource for uncovering the complex signaling networks that regulate activation.


Assuntos
Linfócitos B , Ativação Linfocitária , Receptores de Antígenos de Linfócitos B , Transdução de Sinais , Humanos , Linfócitos B/metabolismo , Linfócitos B/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Antígenos CD19/metabolismo , Linhagem Celular Tumoral , Oxirredução
4.
Nat Commun ; 15(1): 5294, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906885

RESUMO

Determining the balance between DNA double strand break repair (DSBR) pathways is essential for understanding treatment response in cancer. We report a method for simultaneously measuring non-homologous end joining (NHEJ), homologous recombination (HR), and microhomology-mediated end joining (MMEJ). Using this method, we show that patient-derived glioblastoma (GBM) samples with acquired temozolomide (TMZ) resistance display elevated HR and MMEJ activity, suggesting that these pathways contribute to treatment resistance. We screen clinically relevant small molecules for DSBR inhibition with the aim of identifying improved GBM combination therapy regimens. We identify the ATM kinase inhibitor, AZD1390, as a potent dual HR/MMEJ inhibitor that suppresses radiation-induced phosphorylation of DSBR proteins, blocks DSB end resection, and enhances the cytotoxic effects of TMZ in treatment-naïve and treatment-resistant GBMs with TP53 mutation. We further show that a combination of G2/M checkpoint deficiency and reliance upon ATM-dependent DSBR renders TP53 mutant GBMs hypersensitive to TMZ/AZD1390 and radiation/AZD1390 combinations. This report identifies ATM-dependent HR and MMEJ as targetable resistance mechanisms in TP53-mutant GBM and establishes an approach for simultaneously measuring multiple DSBR pathways in treatment selection and oncology research.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Quebras de DNA de Cadeia Dupla , Glioblastoma , Temozolomida , Proteína Supressora de Tumor p53 , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Glioblastoma/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Temozolomida/farmacologia , Linhagem Celular Tumoral , Mutação , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Animais , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos
5.
Eur J Med Chem ; 276: 116613, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39004018

RESUMO

Cyclin-dependent kinase 7, along with cyclin H and MAT1, forms the CDK-activating complex (CAK), which directs cell cycle progression via T-loop phosphorylation of cell cycle CDKs. Pharmacological inhibition of CDK7 leads to selective anti-cancer effects in cellular and in vivo models, motivating several ongoing clinical investigations of this target. Current CDK7 inhibitors are either reversible or covalent inhibitors of its catalytic activity. We hypothesized that small molecule targeted protein degradation (TPD) might result in differentiated pharmacology due to the loss of scaffolding functions. Here, we report the design and characterization of a potent CDK7 degrader that is comprised of an ATP-competitive CDK7 binder linked to a CRL2VHL recruiter. JWZ-5-13 effectively degrades CDK7 in multiple cancer cells and leads to a potent inhibition of cell proliferation. Additionally, compound JWZ-5-13 displayed bioavailability in a pharmacokinetic study conducted in mice. Therefore, JWZ-5-13 is a useful chemical probe to investigate the pharmacological consequences of CDK7 degradation.

6.
bioRxiv ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38895380

RESUMO

Neuroinflammation is a pathological feature of many neurodegenerative diseases, including Alzheimer's disease (AD)1,2 and amyotrophic lateral sclerosis (ALS)3, raising the possibility of common therapeutic targets. We previously established that cytoplasmic double-stranded RNA (cdsRNA) is spatially coincident with cytoplasmic pTDP-43 inclusions in neurons of patients with C9ORF72-mediated ALS4. CdsRNA triggers a type-I interferon (IFN-I)-based innate immune response in human neural cells, resulting in their death4. Here, we report that cdsRNA is also spatially coincident with pTDP-43 cytoplasmic inclusions in brain cells of patients with AD pathology and that type-I interferon response genes are significantly upregulated in brain regions affected by AD. We updated our machine-learning pipeline DRIAD-SP (Drug Repurposing In Alzheimer's Disease with Systems Pharmacology) to incorporate cryptic exon (CE) detection as a proxy of pTDP-43 inclusions and demonstrated that the FDA-approved JAK inhibitors baricitinib and ruxolitinib that block interferon signaling show a protective signal only in cortical brain regions expressing multiple CEs. Furthermore, the JAK family member TYK2 was a top hit in a CRISPR screen of cdsRNA-mediated death in differentiated human neural cells. The selective TYK2 inhibitor deucravacitinib, an FDA-approved drug for psoriasis, rescued toxicity elicited by cdsRNA. Finally, we identified CCL2, CXCL10, and IL-6 as candidate predictive biomarkers for cdsRNA-related neurodegenerative diseases. Together, we find parallel neuroinflammatory mechanisms between TDP-43 associated-AD and ALS and nominate TYK2 as a possible disease-modifying target of these incurable neurodegenerative diseases.

7.
bioRxiv ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36993395

RESUMO

The B cell receptor (BCR) signals together with a multi-component co-receptor complex to initiate B cell activation in response to antigen binding. This process underlies nearly every aspect of proper B cell function. Here, we take advantage of peroxidase-catalyzed proximity labeling combined with quantitative mass spectrometry to track B cell co-receptor signaling dynamics from 10 seconds to 2 hours after BCR stimulation. This approach enables tracking of 2,814 proximity-labeled proteins and 1,394 quantified phosphosites and provides an unbiased and quantitative molecular map of proteins recruited to the vicinity of CD19, the key signaling subunit of the co-receptor complex. We detail the recruitment kinetics of essential signaling effectors to CD19 following activation, and then identify new mediators of B cell activation. In particular, we show that the glutamate transporter SLC1A1 is responsible for mediating rapid metabolic reprogramming immediately downstream of BCR stimulation and for maintaining redox homeostasis during B cell activation. This study provides a comprehensive map of the BCR signaling pathway and a rich resource for uncovering the complex signaling networks that regulate B cell activation.

8.
bioRxiv ; 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37398461

RESUMO

Selective breakdown of proteins and aggregates is crucial for maintaining normal cellular activities and is involved in the pathogenesis of diverse diseases. How the cell recognizes and tags these targets in different structural states for degradation by the proteasome and autophagy pathways has not been well understood. Here, we discovered that a HECT-family ubiquitin ligase HUWE1 is broadly required for the efficient degradation of soluble factors and for the clearance of protein aggregates/condensates. Underlying this capacity of HUWE1 is a novel Ubiquitin-Directed ubiquitin Ligase (UDL) activity which recognizes both soluble substrates and aggregates that carry a high density of ubiquitin chains and rapidly expand the ubiquitin modifications on these targets. Ubiquitin signal amplification by HUWE1 recruits the ubiquitin-dependent segregase p97/VCP to process these targets for subsequent degradation or clearance. HUWE1 controls the cytotoxicity of protein aggregates, mediates Targeted Protein Degradation and regulates cell-cycle transitions with its UDL activity.

9.
Sci Signal ; 16(796): eadg6474, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37527352

RESUMO

Notch signaling relies on ligand-induced proteolysis of the transmembrane receptor Notch to liberate a nuclear effector that drives cell fate decisions. Upon ligand binding, sequential cleavage of Notch by the transmembrane protease ADAM10 and the intracellular protease γ-secretase releases the Notch intracellular domain (NICD), which translocates to the nucleus and forms a complex that induces target gene transcription. To map the location and timing of the individual steps required for the proteolysis and movement of Notch from the plasma membrane to the nucleus, we used proximity labeling with quantitative, multiplexed mass spectrometry to monitor the interaction partners of endogenous NOTCH2 after ligand stimulation in the presence of a γ-secretase inhibitor and as a function of time after inhibitor removal. Our studies showed that γ-secretase-mediated cleavage of NOTCH2 occurred in an intracellular compartment and that formation of nuclear complexes and recruitment of chromatin-modifying enzymes occurred within 45 min of inhibitor washout. These findings provide a detailed spatiotemporal map tracking the path of Notch from the plasma membrane to the nucleus and identify signaling events that are potential targets for modulating Notch activity.


Assuntos
Secretases da Proteína Precursora do Amiloide , Receptores Notch , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ligantes , Receptores Notch/genética , Receptores Notch/metabolismo , Membrana Celular/metabolismo , Transdução de Sinais , Receptor Notch1/genética
10.
Sci Data ; 10(1): 514, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542042

RESUMO

We performed quantitative proteomics on 60 human-derived breast cancer cell line models to a depth of ~13,000 proteins. The resulting high-throughput datasets were assessed for quality and reproducibility. We used the datasets to identify and characterize the subtypes of breast cancer and showed that they conform to known transcriptional subtypes, revealing that molecular subtypes are preserved even in under-sampled protein feature sets. All datasets are freely available as public resources on the LINCS portal. We anticipate that these datasets, either in isolation or in combination with complimentary measurements such as genomics, transcriptomics and phosphoproteomics, can be mined for the purpose of predicting drug response, informing cell line specific context in models of signalling pathways, and identifying markers of sensitivity or resistance to therapeutics.


Assuntos
Neoplasias da Mama , Proteômica , Feminino , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Genômica , Proteômica/métodos , Reprodutibilidade dos Testes
11.
J Org Chem ; 77(9): 4445-9, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22494355

RESUMO

We have developed a copper-catalyzed process for the coupling of aldehydes, amines, and boronic acids. This allows greater reactivity with simple aryl boronic acids and allows coupling reactions to proceed that previously failed. Initial mechanistic studies support a process involving transmetalation from boron to copper.


Assuntos
Aminas/química , Ácidos Borônicos/química , Ácidos Borônicos/síntese química , Cobre/química , Catálise , Ésteres , Estrutura Molecular
12.
Cell Metab ; 34(1): 140-157.e8, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34861155

RESUMO

Uncoupling protein 1 (UCP1) is a major regulator of brown and beige adipocyte energy expenditure and metabolic homeostasis. However, the widely employed UCP1 loss-of-function model has recently been shown to have a severe deficiency in the entire electron transport chain of thermogenic fat. As such, the role of UCP1 in metabolic regulation in vivo remains unclear. We recently identified cysteine-253 as a regulatory site on UCP1 that elevates protein activity upon covalent modification. Here, we examine the physiological importance of this site through the generation of a UCP1 cysteine-253-null (UCP1 C253A) mouse, a precise genetic model for selective disruption of UCP1 in vivo. UCP1 C253A mice exhibit significantly compromised thermogenic responses in both males and females but display no measurable effect on fat accumulation in an obesogenic environment. Unexpectedly, we find that a lack of C253 results in adipose tissue redox stress, which drives substantial immune cell infiltration and systemic inflammatory pathology in adipose tissues and liver of male, but not female, mice. Elevation of systemic estrogen reverses this male-specific pathology, providing a basis for protection from inflammation due to loss of UCP1 C253 in females. Together, our results establish the UCP1 C253 activation site as a regulator of acute thermogenesis and sex-dependent tissue inflammation.


Assuntos
Tecido Adiposo Marrom , Cisteína , Tecido Adiposo/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Cisteína/metabolismo , Metabolismo Energético , Feminino , Inflamação/metabolismo , Masculino , Camundongos , Termogênese/fisiologia , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
13.
Nat Commun ; 13(1): 5789, 2022 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-36184661

RESUMO

Immunoglobulin light chain (AL) amyloidosis is an incurable hematologic disorder typically characterized by the production of amyloidogenic light chains by clonal plasma cells. These light chains misfold and aggregate in healthy tissues as amyloid fibrils, leading to life-threatening multi-organ dysfunction. Here we show that the clonal plasma cells in AL amyloidosis are highly primed to undergo apoptosis and dependent on pro-survival proteins MCL-1 and BCL-2. Notably, this MCL-1 dependency is indirectly targeted by the proteasome inhibitor bortezomib, currently the standard of care for this disease and the related plasma cell disorder multiple myeloma, due to upregulation of pro-apoptotic Noxa and its inhibitory binding to MCL-1. BCL-2 inhibitors sensitize clonal plasma cells to multiple front-line therapies including bortezomib, dexamethasone and lenalidomide. Strikingly, in mice bearing AL amyloidosis cell line xenografts, single agent treatment with the BCL-2 inhibitor ABT-199 (venetoclax) produces deeper remissions than bortezomib and triples median survival. Mass spectrometry-based proteomic analysis reveals rewiring of signaling pathways regulating apoptosis, proliferation and mitochondrial metabolism between isogenic AL amyloidosis and multiple myeloma cells that divergently alter their sensitivity to therapies. These findings provide a roadmap for the use of BH3 mimetics to exploit endogenous and induced apoptotic vulnerabilities in AL amyloidosis.


Assuntos
Antineoplásicos , Amiloidose de Cadeia Leve de Imunoglobulina , Mieloma Múltiplo , Amiloide/uso terapêutico , Animais , Antineoplásicos/farmacologia , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Humanos , Cadeias Leves de Imunoglobulina , Amiloidose de Cadeia Leve de Imunoglobulina/tratamento farmacológico , Lenalidomida/farmacologia , Lenalidomida/uso terapêutico , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Inibidores de Proteassoma , Proteômica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas
14.
Nat Cardiovasc Res ; 1(11): 1022-1038, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36424916

RESUMO

Fight-or-flight responses involve ß-adrenergic-induced increases in heart rate and contractile force. In the present study, we uncover the primary mechanism underlying the heart's innate contractile reserve. We show that four protein kinase A (PKA)-phosphorylated residues in Rad, a calcium channel inhibitor, are crucial for controlling basal calcium current and essential for ß-adrenergic augmentation of calcium influx in cardiomyocytes. Even with intact PKA signaling to other proteins modulating calcium handling, preventing adrenergic activation of calcium channels in Rad-phosphosite-mutant mice (4SA-Rad) has profound physiological effects: reduced heart rate with increased pauses, reduced basal contractility, near-complete attenuation of ß-adrenergic contractile response and diminished exercise capacity. Conversely, expression of mutant calcium-channel ß-subunits that cannot bind 4SA-Rad is sufficient to enhance basal calcium influx and contractility to adrenergically augmented levels of wild-type mice, rescuing the failing heart phenotype of 4SA-Rad mice. Hence, disruption of interactions between Rad and calcium channels constitutes the foundation toward next-generation therapeutics specifically enhancing cardiac contractility.

15.
Nat Metab ; 3(5): 604-617, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34002097

RESUMO

Non-alcoholic fatty liver disease (NAFLD), the most prevalent liver pathology worldwide, is intimately linked with obesity and type 2 diabetes. Liver inflammation is a hallmark of NAFLD and is thought to contribute to tissue fibrosis and disease pathogenesis. Uncoupling protein 1 (UCP1) is exclusively expressed in brown and beige adipocytes, and has been extensively studied for its capacity to elevate thermogenesis and reverse obesity. Here we identify an endocrine pathway regulated by UCP1 that antagonizes liver inflammation and pathology, independent of effects on obesity. We show that, without UCP1, brown and beige fat exhibit a diminished capacity to clear succinate from the circulation. Moreover, UCP1KO mice exhibit elevated extracellular succinate in liver tissue that drives inflammation through ligation of its cognate receptor succinate receptor 1 (SUCNR1) in liver-resident stellate cell and macrophage populations. Conversely, increasing brown and beige adipocyte content in mice antagonizes SUCNR1-dependent inflammatory signalling in the liver. We show that this UCP1-succinate-SUCNR1 axis is necessary to regulate liver immune cell infiltration and pathology, and systemic glucose intolerance in an obesogenic environment. As such, the therapeutic use of brown and beige adipocytes and UCP1 extends beyond thermogenesis and may be leveraged to antagonize NAFLD and SUCNR1-dependent liver inflammation.


Assuntos
Suscetibilidade a Doenças , Hepatite/etiologia , Hepatite/metabolismo , Ácido Succínico/metabolismo , Proteína Desacopladora 1/genética , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Espaço Extracelular/metabolismo , Glucose/metabolismo , Intolerância à Glucose/metabolismo , Hepatite/patologia , Humanos , Redes e Vias Metabólicas , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteína Desacopladora 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA