Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38732651

RESUMO

Polymers derived from natural biomass have emerged as a valuable resource in the field of biomedicine due to their versatility. Polysaccharides, peptides, proteins, and lignin have demonstrated promising results in various applications, including drug delivery design. However, several challenges need to be addressed to realize the full potential of these polymers. The current paper provides a comprehensive overview of the latest research and perspectives in this area, with a particular focus on developing effective methods and efficient drug delivery systems. This review aims to offer insights into the opportunities and challenges associated with the use of natural polymers in biomedicine and to provide a roadmap for future research in this field.

2.
Polymers (Basel) ; 15(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37960005

RESUMO

Methotrexate or amethopterin or 4-amino-N10-methyl pteroylglutamic acid is used for treating autoimmune diseases, as well as certain malignancies. Drug delivery systems, which are based on biopolymers, can be developed to improve the therapeutic and pharmacological properties of topically administered drugs. Biopolymers improve the therapeutic effect of drugs, mainly by improving their biodistribution and modulating drug release. This study presents the synthesis of membranes based on anionic polysaccharides and cationic polysaccharides for transdermal delivery of the active ingredient methotrexate, as well as a compatibility study between methotrexate and each of the components used in the prepared membranes. The obtained membranes based on different marine polysaccharides, namely κ-carrageenan and chitosan, for the release of the active ingredient methotrexate were characterized using techniques such as TG, FTIR, UV-Vis spectrophotometry, FTIR microscopy, water absorption capacity, water vapor permeability, and biodegradation rate. Following the studies, the membranes suitable for the transdermal release of the active substance were validated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA