Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 320(2): L193-L204, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112186

RESUMO

Premature infants, especially those with bronchopulmonary dysplasia (BPD), develop recurrent severe respiratory viral illnesses. We have shown that hyperoxic exposure of immature mice, a model of BPD, increases lung IL-12-producing Clec9a+ CD103+ dendritic cells (DCs), pro-inflammatory responses, and airway hyperreactivity following rhinovirus (RV) infection. However, the requirement for CD103+ DCs and Clec9a, a DAMP receptor that binds necrotic cell cytoskeletal filamentous actin (F-actin), for RV-induced inflammatory responses has not been demonstrated. To test this, 2-day-old C57BL/6J, CD103+ DC-deficient Batf3-/- or Clec9agfp-/- mice were exposed to normoxia or hyperoxia for 14 days. Also, selected mice were treated with neutralizing antibody against CD103. Immediately after hyperoxia, the mice were inoculated with RV intranasally. We found that compared with wild-type mice, hyperoxia-exposed Batf3-/- mice showed reduced levels of IL-12p40, IFN-γ, and TNF-α, fewer IFN-γ-producing CD4+ T cells, and decreased airway responsiveness following RV infection. Similar effects were observed in anti-CD103-treated and Clec9agfp-/- mice. Furthermore, hyperoxia increased airway dead cell number and extracellular F-actin levels. Finally, studies in preterm infants with respiratory distress syndrome showed that tracheal aspirate CLEC9A expression positively correlated with IL12B expression, consistent with the notion that CLEC9A+ cells are responsible for IL-12 production in humans as well as mice. We conclude that CD103+ DCs and Clec9a are required for hyperoxia-induced pro-inflammatory responses to RV infection. In premature infants, Clec9a-mediated activation of CD103+ DCs may promote pro-inflammatory responses to viral infection, thereby driving respiratory morbidity.


Assuntos
Antígenos CD/metabolismo , Células Dendríticas/imunologia , Hiperóxia/fisiopatologia , Cadeias alfa de Integrinas/metabolismo , Lectinas Tipo C/fisiologia , Pulmão/imunologia , Pneumonia/imunologia , Receptores Imunológicos/fisiologia , Síndrome do Desconforto Respiratório do Recém-Nascido/imunologia , Animais , Animais Recém-Nascidos , Antígenos CD/genética , Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro/imunologia , Cadeias alfa de Integrinas/genética , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Picornaviridae/complicações , Infecções por Picornaviridae/virologia , Pneumonia/virologia , Proteínas Repressoras/fisiologia , Síndrome do Desconforto Respiratório do Recém-Nascido/metabolismo , Síndrome do Desconforto Respiratório do Recém-Nascido/patologia , Rhinovirus/isolamento & purificação
2.
Inorg Chem ; 59(6): 3783-3793, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32129071

RESUMO

A series of tunnel structured V-substituted silver hollandite (Ag1.2VxMn8-xO16, x = 0-1.4) samples is prepared and characterized through a combination of synchrotron X-ray diffraction (XRD), synchrotron X-ray absorption spectroscopy (XAS), laboratory Raman spectroscopy, and electron microscopy measurements. The oxidation states of the individual transition metals are characterized using V and Mn K-edge XAS data indicating the vanadium centers exist as V5+, and the Mn oxidation state decreases with increased V substitution to balance the charge. Scanning transmission electron microscopy of reduced materials shows reduction-displacement of silver metal at high levels of lithiation. In lithium batteries, the V-substituted tunneled manganese oxide materials reveal previously unseen reversible nonaqueous Ag electrochemistry and exhibit up to 2.5× higher Li storage capacity relative to their unsubstituted counterparts. The highest capacity was observed for the Ag1.2(V0.8Mn7.2)O16·0.8H2O material with an intermediate level of V substitution, likely due to a combination of the atomic composition, the morphology of the particle, and the homogeneous distribution of the active material within the electrode structure where factors over multiple length scales contribute to the electrochemistry.

4.
Acc Chem Res ; 51(3): 575-582, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29457710

RESUMO

Future advances in energy storage systems rely on identification of appropriate target materials and deliberate synthesis of the target materials with control of their physiochemical properties in order to disentangle the contributions of distinct properties to the functional electrochemistry. This goal demands systematic inquiry using model materials that provide the opportunity for significant synthetic versatility and control. Ideally, a material family that enables direct manipulation of characteristics including composition, defects, and crystallite size while remaining within the defined structural framework would be necessary. Accomplishing this through direct synthetic methods is desirable to minimize the complicating effects of secondary processing. The structural motif most frequently used for insertion type electrodes is based on layered type structures where ion diffusion in two dimensions can be envisioned. However, lattice expansion and contraction associated with the ion movement and electron transfer as a result of repeated charge and discharge cycling can result in structural degradation and amorphization with accompanying loss of capacity. In contrast, tunnel type structures embody a more rigid framework where the inherent structural design can accommodate the presence of cations and often multiple cations. Of specific interest are manganese oxides as they can exhibit a tunneled structure, termed α-MnO2, and are an important class of nanomaterial in the fields of catalysis, adsorption-separation, and ion-exchange. The α-MnO2 structure has one-dimensional 2 × 2 tunnels formed by corner and edge sharing manganese octahedral [MnO6] units and can be readily substituted in the central tunnel by a variety of cations of varying size. Importantly, α-MnO2 materials possess a rich chemistry with significant synthetic versatility allowing deliberate synthetic control of structure, composition, crystallite size, and defect content. This Account considers the investigation of α-MnO2 tunnel type structures and their electrochemistry. Examination of the reported findings on this material family demonstrates that multiple physiochemical properties influence the electrochemistry. The retention of the parent structure during charge and discharge cycling, the material composition including the identity and content of the central cation, the surface condition including oxygen vacancies, and crystallite size have all been demonstrated to impact electrochemical function. The selection of the α-MnO2 family of materials as a model system and the ability to control the variables associated with the structural family affirm that full investigation of the mechanisms related to active materials in an electrochemical system demands concerted efforts in synthetic material property control and multimodal characterization, combined with theory and modeling. This then enables more complete understanding of the factors that must be controlled to achieve consistent and desirable outcomes.

5.
Phys Chem Chem Phys ; 19(33): 22329-22343, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28805218

RESUMO

The structure of pristine AgFeO2 and phase makeup of Ag0.2FeO1.6 (a one-pot composite comprised of nanocrystalline stoichiometric AgFeO2 and amorphous γ-Fe2O3 phases) was investigated using synchrotron X-ray diffraction. A new stacking-fault model was proposed for AgFeO2 powder synthesized using the co-precipitation method. The lithiation/de-lithiation mechanisms of silver ferrite, AgFeO2 and Ag0.2FeO1.6 were investigated using ex situ, in situ, and operando characterization techniques. An amorphous γ-Fe2O3 component in the Ag0.2FeO1.6 sample is quantified. Operando XRD of electrochemically reduced AgFeO2 and Ag0.2FeO1.6 composites demonstrated differences in the structural evolution of the nanocrystalline AgFeO2 component. As complimentary techniques to XRD, ex situ X-ray Absorption Spectroscopy (XAS) provided insight into the short-range structure of the (de)lithiated nanocrystalline electrodes, and a novel in situ high energy X-ray fluorescence nanoprobe (HXN) mapping measurement was applied to spatially resolve the progression of discharge. Based on the results, a redox mechanism is proposed where the full reduction of Ag+ to Ag0 and partial reduction of Fe3+ to Fe2+ occur on reduction to 1.0 V, resulting in a Li1+yFeIIIFeIIyO2 phase. The Li1+yFeIIIFeIIyO2 phase can then reversibly cycle between Fe3+ and Fe2+ oxidation states, permitting good capacity retention over 50 cycles. In the Ag0.2FeO1.6 composite, a substantial amorphous γ-Fe2O3 component is observed which discharges to rock salt LiFe2O3 and Fe0 metal phase in the 3.5-1.0 V voltage range (in parallel with the AgFeO2 mechanism), and reversibly reoxidizes to a nanocrystalline iron oxide phase.

6.
Phys Chem Chem Phys ; 18(25): 16930-40, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27292604

RESUMO

Copper ferrite, CuFe2O4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe2O4. A phase pure tetragonal CuFe2O4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. Ex situ X-ray absorption spectroscopy (XAS) measurements were used to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(ii) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(iii) cations to octahedral positions previously occupied by copper(ii). Upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(iii) was achieved. The results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.

7.
Phys Chem Chem Phys ; 17(17): 11204-10, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25827353

RESUMO

Previously, we reported that electrodes containing silver vanadium phosphate (Ag2VO2PO4) powder exhibit a 15,000 fold increase in conductivity after discharge, concurrent with the formation of silver metal. In this study, in order to disentangle the complex nature of electrodes composed of electroactive powders, an electrochemical reduction of individual particles of Ag2VO2PO4 was conducted, to more directly probe the intrinsic materials properties of Ag2VO2PO4. Specifically, individual particle conductivity data from a nanoprobe system combined with SEM and optical imaging results revealed that the depth of discharge within an Ag2VO2PO4 particle is closely linked to the conductivity increase. Notably, the formation of silver metal may affect both inter- and intraparticle conductivity of the Ag2VO2PO4 material.

8.
RSC Adv ; 14(22): 15743-15754, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38746847

RESUMO

It is established that the rates of solvent exchange at interfaces correlate with the rates of a number of mineral reactions, including growth, dissolution and ion sorption. To test if solvent exchange is limiting these rates, quasi-elastic neutron scattering (QENS) is used here to benchmark classical molecular dynamics (CMD) simulations of water bound to nanoparticulate calcite. Four distributions of solvent exchanges are found with residence times of 8.9 ps for water bound to calcium sites, 14 ps for that bound to carbonate sites and 16.7 and 85.1 ps for two bound waters in a shared calcium-carbonate conformation. By comparing rates and activation energies, it is found that solvent exchange limits reaction rates neither for growth nor dissolution, likely due to the necessity to form intermediate states during ion sorption. However, solvent exchange forms the ceiling for reaction rates and yields insight into more complex reaction pathways.

9.
Front Immunol ; 14: 1156842, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744375

RESUMO

Bronchopulmonary dysplasia (BPD) is a chronic lung disease in preterm birth survivors characterized by inflammation, impaired alveolarization and dysmorphic vasculature. Activated IL-17A+ lymphocytes are key drivers of inflammation in preterm infants. We have shown that in immature mice chronic airway exposure to lipopolysaccharide (LPS) induces pulmonary inflammation, increased IL-17a expression, and hypoalveolarization, a BPD-like phenotype. The source of IL-17a and contribution to lung pathology is unknown. The natural-killer group 2, member D (NKG2D) receptor mediates activation and IL-17a production in γδ T cells by binding to stress molecules. LPS induces NKG2D ligand expression, including Rae-1 and MULT1. We hypothesized that IL-17a+ γδ T cells and NKG2D signaling mediate neonatal LPS-induced lung injury. Immature C57BL/6J (wild type), Nkg2d-/- or Tcrd-/- (lacking γδ T cells) mice were inoculated with 3ug/10ul of LPS from E. coli O26:B6 or 10ul of PBS intranasally on day of life 3, 5, 7, and 10. Selected mice were treated with neutralizing antibodies against IL-17a, or NKG2D intraperitoneally. Lung immune cells were assessed by flow cytometry and gene expression was analyzed by qPCR. Alveolar growth was assessed by lung morphometry. We established that anti-IL-17a antibody treatment attenuated LPS-induced hypoalveolarization. We found that LPS induced the fraction of IL-17a+NKG2D+ γδ T cells, a major source of IL-17a in the neonatal lung. LPS also induced lung mRNA expression of NKG2D, Rae-1, MULT1, and the DNA damage regulator p53. Anti-NKG2D treatment attenuated the effect of LPS on γδ T cell IL-17a expression, immune cell infiltration and hypoalveolarization. LPS-induced hypoalveolarization was also attenuated in Nkg2d-/- and Tcrd-/- mice. In tracheal aspirates of preterm infants IL-17A and its upstream regulator IL-23 were higher in infants who later developed BPD. Also, human ligands of NKG2D, MICA and MICB were present in the aspirates and MICA correlated with median FiO2. Our novel findings demonstrate a central role for activated IL-17a+ γδ T cells and NKG2D signaling in neonatal LPS-induced lung injury. Future studies will determine the role of NKG2D ligands and effectors, other NKG2D+ cells in early-life endotoxin-induced lung injury and inflammation with a long-term goal to understand how inflammation contributes to BPD pathogenesis.


Assuntos
Displasia Broncopulmonar , Interleucina-17 , Lesão Pulmonar , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Animais , Humanos , Recém-Nascido , Camundongos , Endotoxinas , Escherichia coli , Recém-Nascido Prematuro , Inflamação , Ligantes , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética
10.
Front Immunol ; 14: 1116675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845082

RESUMO

Premature infants with chronic lung disease, bronchopulmonary dysplasia (BPD), develop recurrent cough and wheezing following respiratory viral infections. The mechanisms driving the chronic respiratory symptoms are ill-defined. We have shown that hyperoxic exposure of neonatal mice (a model of BPD) increases the activated lung CD103+ dendritic cells (DCs) and these DCs are required for exaggerated proinflammatory responses to rhinovirus (RV) infection. Since CD103+ DC are essential for specific antiviral responses and their development depends on the growth factor Flt3L, we hypothesized that early-life hyperoxia stimulates Flt3L expression leading to expansion and activation of lung CD103+ DCs and this mediates inflammation. We found that hyperoxia numerically increased and induced proinflammatory transcriptional signatures in neonatal lung CD103+ DCs, as well as CD11bhi DCs. Hyperoxia also increased Flt3L expression. Anti-Flt3L antibody blocked CD103+ DC development in normoxic and hyperoxic conditions, and while it did not affect the baseline number of CD11bhi DCs, it neutralized the effect of hyperoxia on these cells. Anti-Flt3L also inhibited hyperoxia-induced proinflammatory responses to RV. In tracheal aspirates from preterm infants mechanically-ventilated for respiratory distress in the first week of life levels of FLT3L, IL-12p40, IL-12p70 and IFN-γ were higher in infants who went on to develop BPD and FLT3L levels positively correlated with proinflammatory cytokines levels. This work highlights the priming effect of early-life hyperoxia on lung DC development and function and the contribution of Flt3L in driving these effects.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Animais , Humanos , Recém-Nascido , Camundongos , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/metabolismo , Células Dendríticas , Hiperóxia/metabolismo , Recém-Nascido Prematuro , Pulmão
11.
Sci Signal ; 16(808): eabo6555, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37874883

RESUMO

The cytokine interleukin-17 (IL-17) is secreted by T helper 17 (TH17) cells and is beneficial for microbial control; however, it also causes inflammation and pathological tissue remodeling in autoimmunity. Hence, TH17 cell differentiation and IL-17 production must be tightly regulated, but, to date, this has been defined only in terms of transcriptional control. Phosphatidylinositols are second messengers produced during T cell activation that transduce signals from the T cell receptor (TCR) and costimulatory receptors at the plasma membrane. Here, we found that phosphatidylinositol 4,5-bisphosphate (PIP2) was enriched in the nuclei of human TH17 cells, which depended on the kinase PIP5K1α, and that inhibition of PIP5K1α impaired IL-17A production. In contrast, nuclear PIP2 enrichment was not observed in TH1 or TH2 cells, and these cells did not require PIP5K1α for cytokine production. In T cells from people with multiple sclerosis, IL-17 production elicited by myelin basic protein was blocked by PIP5K1α inhibition. IL-17 protein was affected without altering either the abundance or stability of IL17A mRNA in TH17 cells. Instead, analysis of PIP5K1α-associating proteins revealed that PIP5K1α interacted with ARS2, a nuclear cap-binding complex scaffold protein, to facilitate its binding to IL17A mRNA and subsequent IL-17A protein production. These findings highlight a transcription-independent, translation-dependent mechanism for regulating IL-17A protein production that might be relevant to other cytokines.


Assuntos
Interleucina-17 , Esclerose Múltipla , Humanos , Diferenciação Celular , Citocinas/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Esclerose Múltipla/genética , Receptores de Antígenos de Linfócitos T/metabolismo , RNA Mensageiro/metabolismo , Células Th17
12.
Front Immunol ; 13: 792716, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35173718

RESUMO

Prematurity and bronchopulmonary dysplasia (BPD) increase the risk of asthma later in life. Supplemental oxygen therapy is a risk factor for chronic respiratory symptoms in infants with BPD. Hyperoxia induces cell injury and release of damage-associated molecular patterns (DAMPs). Cytoskeletal filamentous actin (F-actin) is a DAMP which binds Clec9a, a C-type lectin selectively expressed on CD103+ dendritic cells (DCs). Co-stimulation of Clec9a and TLR3 induces maximal proinflammatory responses. We have shown that neonatal hyperoxia (a model of BPD) increases lung IL-12+Clec9a+CD103+ DCs, pro-inflammatory responses and airway hyperreactivity following rhinovirus (RV) infection. CD103+ DCs and Clec9a are required for these responses. Hyperoxia increases F-actin levels in bronchoalveolar lavage fluid (BALF). We hypothesized that the F-actin severing protein gelsolin attenuates neonatal hyperoxia-induced Clec9a+CD103+ DC-dependent pro-inflammatory responses to RV and preserves alveolarization. We exposed neonatal mice to hyperoxia and treated them with gelsolin intranasally. Subsequently we inoculated the mice with RV intranasally. Alternatively, we inoculated normoxic neonatal mice with BALF from hyperoxia-exposed mice (hyperoxic BALF), RV and gelsolin. We analyzed lung gene expression two days after RV infection. For in vitro studies, lung CD11c+ cells were isolated from C57BL/6J or Clec9agfp-/- mice and incubated with hyperoxic BALF and RV. Cells were analyzed by flow cytometry. In neonatal mice, gelsolin blocked hyperoxia-induced Il12p40, TNF-α and IFN-γ mRNA and protein expression in response to RV infection. Similar effects were observed when gelsolin was co-administered with hyperoxic BALF and RV. Gelsolin decreased F-actin levels in hyperoxic BALF in vitro and inhibited hyperoxia-induced D103lo DC expansion and inflammation in vivo. Gelsolin also attenuated hyperoxia-induced hypoalveolarization. Further, incubation of lung CD11c+ cells from WT and Clec9agfp-/- mice with hyperoxic BALF and RV, showed Clec9a is required for maximal hyperoxic BALF and RV induced IL-12 expression in CD103+ DCs. Finally, in tracheal aspirates from mechanically ventilated human preterm infants the F-actin to gelsolin ratio positively correlates with FiO2, and gelsolin levels decrease during the first two weeks of mechanical ventilation. Collectively, our findings demonstrate a promising role for gelsolin, administered by inhalation into the airway to treat RV-induced exacerbations of BPD and prevent chronic lung disease.


Assuntos
Displasia Broncopulmonar/tratamento farmacológico , Gelsolina/administração & dosagem , Hiperóxia/fisiopatologia , Lectinas Tipo C/metabolismo , Infecções por Picornaviridae/tratamento farmacológico , Receptores Imunológicos/metabolismo , Administração por Inalação , Animais , Animais Recém-Nascidos/metabolismo , Antígenos CD/metabolismo , Displasia Broncopulmonar/virologia , Feminino , Humanos , Recém-Nascido , Cadeias alfa de Integrinas/metabolismo , Interleucina-12/metabolismo , Lectinas Tipo C/genética , Pulmão/metabolismo , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxigenoterapia/efeitos adversos , Infecções por Picornaviridae/virologia , Receptores Imunológicos/genética , Testes de Função Respiratória , Rhinovirus/isolamento & purificação
13.
ACS Nano ; 15(2): 2994-3003, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33513013

RESUMO

Layered titanium carbide (Ti3C2Tx) MXene is a promising electrode material for use in next-generation electrochemical capacitors. However, the atomic-level information needed to correlate the distribution of intercalated cations with surface redox reactions, has not been investigated in detail. Herein we report on sodium preintercalated MXene with high sodium content (up to 2Na per Ti3C2Tx formula) using a solution of Na-biphenyl radical anion complex (E0 ≈ -2.6 SHE). Multiple sodiation sites and formation of a two-dimensional sodium domain structure at interfaces/surfaces is identified through combined computational simulations with neutron pair distribution function analysis. The induced layer charges and the redox process characterized by the density-functional tight-binding method on a local scale are found to greatly depend on the location of sodium ions. Electrochemical testing of the pre-sodiated MXene as an electrode material in a sodium-ion capacitor shows excellent reversibility and promising performance, indicating the feasibility of chemical preintercalation as an approach to prepare MXene electrodes for ion capacitors.

14.
Front Immunol ; 11: 579628, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117383

RESUMO

The histopathology of bronchopulmonary dysplasia (BPD) includes hypoalveolarization and interstitial thickening due to abnormal myofibroblast accumulation. Chorioamnionitis and sepsis are major risk factors for BPD development. The cellular mechanisms leading to these lung structural abnormalities are poorly understood. We used an animal model with repeated lipopolysaccharide (LPS) administration into the airways of immature mice to simulate prolonged airway exposure to gram-negative bacteria, focusing on the role of C-C chemokine receptor type 2-positive (CCR2+) exudative macrophages (ExMf). Repetitive LPS exposure of immature mice induced persistent hypoalveolarization observed at 4 and 18 days after the last LPS administration. LPS upregulated the expression of lung pro-inflammatory cytokines (TNF-α, IL-17a, IL-6, IL-1ß) and chemokines (CCL2, CCL7, CXCL1, and CXCL2), while the expression of genes involved in lung alveolar and mesenchymal cell development (PDGFR-α, FGF7, FGF10, and SPRY1) was decreased. LPS induced recruitment of ExMf, including CCR2+ ExMf, as well as other myeloid cells like DCs and neutrophils. Lungs of LPS-exposed CCR2-/- mice showed preserved alveolar structure and normal patterns of α-actin and PDGFRα expression at the tips of the secondary alveolar crests. Compared to wild type mice, a significantly lower number of ExMf, including TNF-α+ ExMf were recruited to the lungs of CCR2-/- mice following repetitive LPS exposure. Further, pharmacological inhibition of TLR4 with TAK-242 also blocked the effect of LPS on alveolarization, α-SMA and PDGFRα expression. TNF-α and IL-17a induced α-smooth muscle actin expression in the distal airspaces of E16 fetal mouse lung explants. In human preterm lung mesenchymal stromal cells, TNF-α reduced mRNA and protein expression of PDGFR-α and decreased mRNA expression of WNT2, FOXF2, and SPRY1. Collectively, our findings demonstrate that in immature mice repetitive LPS exposure, through TLR4 signaling increases lung inflammation and impairs lung alveolar growth in a CCR2-dependent manner.


Assuntos
Displasia Broncopulmonar/metabolismo , Inflamação/imunologia , Macrófagos/imunologia , Alvéolos Pulmonares/patologia , Receptores CCR2/metabolismo , Animais , Células Cultivadas , Doença Crônica , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores CCR2/genética , Transdução de Sinais
15.
ACS Appl Mater Interfaces ; 10(1): 400-407, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29227624

RESUMO

α-MnO2-structured materials are generally classified as semiconductors; thus, we present a strategy to increase electrochemical utilization through the design of a conductive material interface. Surface treatment of silver hollandite (AgxMn8O16) with Ag+ (Ag2O) provides significant benefits to the resultant electrochemistry, including a decreased charge-transfer resistance and a 2-fold increase in deliverable energy density at a high rate. The improved function of this designed interface relative to conventional electrode fabrication strategies is highlighted.

16.
Chem Commun (Camb) ; 53(26): 3665-3668, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28294244

RESUMO

MgMn2O4 nanoparticles with crystallite sizes of 11 (MMO-1) and 31 nm (MMO-2) were synthesized and their magnesium-ion battery-relevant electrochemistry was investigated. MMO-1 delivered an initial capacity of 220 mA h g-1 (678 mW h g-1). Electrolyte water content had a profound effect on cycle retention.

17.
ACS Nano ; 9(8): 8430-9, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26181235

RESUMO

Hollandites (OMS-2) are an intriguing class of sorbents, catalysts, and energy storage materials with a tunnel structure permitting one-dimensional insertion and deinsertion of ions and small molecules along the c direction. A 7-fold increase in delivered capacity for Li/AgxMn8O16 electrochemical cells (160 versus 23 mAh/g) observed upon a seemingly small change in silver content (x ∼1.1 (L-Ag-OMS-2) and 1.6 (H-Ag-OMS-2)) led us to characterize the structure and defects of the silver hollandite material. Herein, Ag hollandite nanorods are studied through the combined use of local (atomic imaging, electron diffraction, electron energy-loss spectroscopy) and bulk (synchrotron based X-ray diffraction, thermogravimetric analysis) techniques. Selected area diffraction and high resolution transmission electron microscopy show a structure consistent with that refined by XRD; however, the Ag occupancy varies significantly even within neighboring channels. Both local and bulk measurements indicate a greater quantity of oxygen vacancies in L-Ag-OMS-2, resulting in lower average Mn valence relative to H-Ag-OMS-2. Electron energy loss spectroscopy shows a lower Mn oxidation state on the surface relative to the interior of the nanorods, where the average Mn valence is approximately Mn(3.7+) for H-Ag-OMS-2 and Mn(3.5+) for L-Ag-OMS-2 nanorods, respectively. The higher delivered capacity of L-Ag-OMS-2 may be related to more oxygen vacancies compared to H-Ag-OMS-2. Thus, the oxygen vacancies and MnO6 octahedra distortion are assumed to open the MnO6 octahedra walls, facilitating Li diffusion in the ab plane. These results indicate crystallite size and surface defects are significant factors affecting battery performance.

18.
IEEE Trans Biomed Eng ; 57(9): 2122-34, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20501341

RESUMO

A state-space formulation is introduced for estimating multivariate autoregressive (MVAR) models of cortical connectivity from noisy, scalp-recorded EEG. A state equation represents the MVAR model of cortical dynamics, while an observation equation describes the physics relating the cortical signals to the measured EEG and the presence of spatially correlated noise. We assume that the cortical signals originate from known regions of cortex, but the spatial distribution of activity within each region is unknown. An expectation-maximization algorithm is developed to directly estimate the MVAR model parameters, the spatial activity distribution components, and the spatial covariance matrix of the noise from the measured EEG. Simulation and analysis demonstrate that this integrated approach is less sensitive to noise than two-stage approaches in which the cortical signals are first estimated from EEG measurements, and next, an MVAR model is fit to the estimated cortical signals. The method is further demonstrated by estimating conditional Granger causality using EEG data collected while subjects passively watch a movie.


Assuntos
Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Modelos Neurológicos , Algoritmos , Simulação por Computador , Humanos , Análise Multivariada , Análise de Regressão , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA