RESUMO
OBJECTIVE: This study was undertaken to assess reproducibility of the epilepsy outcome and phenotype in a lateral fluid percussion model of posttraumatic epilepsy (PTE) across three study sites. METHODS: A total of 525 adult male Sprague Dawley rats were randomized to lateral fluid percussion-induced brain injury (FPI) or sham operation. Of these, 264 were assigned to magnetic resonance imaging (MRI cohort, 43 sham, 221 traumatic brain injury [TBI]) and 261 to electrophysiological follow-up (EEG cohort, 41 sham, 220 TBI). A major effort was made to harmonize the rats, materials, equipment, procedures, and monitoring systems. On the 7th post-TBI month, rats were video-EEG monitored for epilepsy diagnosis. RESULTS: A total of 245 rats were video-EEG phenotyped for epilepsy on the 7th postinjury month (121 in MRI cohort, 124 in EEG cohort). In the whole cohort (n = 245), the prevalence of PTE in rats with TBI was 22%, being 27% in the MRI and 18% in the EEG cohort (p > .05). Prevalence of PTE did not differ between the three study sites (p > .05). The average seizure frequency was .317 ± .725 seizures/day at University of Eastern Finland (UEF; Finland), .085 ± .067 at Monash University (Monash; Australia), and .299 ± .266 at University of California, Los Angeles (UCLA; USA; p < .01 as compared to Monash). The average seizure duration did not differ between UEF (104 ± 48 s), Monash (90 ± 33 s), and UCLA (105 ± 473 s; p > .05). Of the 219 seizures, 53% occurred as part of a seizure cluster (≥3 seizures/24 h; p >.05 between the study sites). Of the 209 seizures, 56% occurred during lights-on period and 44% during lights-off period (p > .05 between the study sites). SIGNIFICANCE: The PTE phenotype induced by lateral FPI is reproducible in a multicenter design. Our study supports the feasibility of performing preclinical multicenter trials in PTE to increase statistical power and experimental rigor to produce clinically translatable data to combat epileptogenesis after TBI.
Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Animais , Masculino , Ratos , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Epilepsia/etiologia , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/patologia , Percussão , Fenótipo , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , ConvulsõesRESUMO
OBJECTIVE: More than one third of mesial temporal lobe epilepsy (MTLE) patients are resistant to current antiseizure medications (ASMs), and half experience mild-to-moderate adverse effects of ASMs. There is therefore a strong need to develop and test novel ASMs. The objective of this work is to evaluate the pharmacokinetics and neurological toxicity of E2730, a novel uncompetitive inhibitor of γ-aminobutyric acid transporter-1, and to test its seizure suppression effects in a rat model of chronic MTLE. METHODS: We first examined plasma levels and adverse neurological effects of E2730 in healthy Wistar rats. Adult male rats were implanted with osmotic pumps delivering either 10, 20, or 100 mg/kg/day of E2730 subcutaneously for 1 week. Blood sampling and behavioral assessments were performed at several timepoints. We next examined whether E2730 suppressed seizures in rats with chronic MTLE. These rats were exposed to kainic acid-induced status epilepticus, and 9 weeks later, when chronic epilepsy was established, were assigned to receive one of the three doses of E2730 or vehicle for 1 week in a randomized crossover design. Continuous video-electroencephalographic monitoring was acquired during the treatment period to evaluate epileptic seizures. RESULTS: Plasma levels following continuous infusion of E2730 showed a clear dose-related increase in concentration. The drug was well tolerated at all doses, and any sedation or neuromotor impairment was mild and transient, resolving within 48 h of treatment initiation. Remarkably, E2730 treatment in chronically epileptic rats led to seizure suppression in a dose-dependent manner, with 65% of rats becoming seizure-free at the highest dose tested. Mean seizure class did not differ between the treatment groups. SIGNIFICANCE: This study shows that continuous subcutaneous infusion of E2730 over 7 days results in a marked, dose-dependent suppression of spontaneous recurrent seizures, with minimal adverse neurological effects, in a rat model of chronic MTLE. E2730 shows strong promise as an effective new ASM to be translated into clinical trials.
Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Humanos , Adulto , Ratos , Masculino , Animais , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/tratamento farmacológico , Ratos Wistar , Convulsões/tratamento farmacológico , Eletroencefalografia , Ácido gama-Aminobutírico , Modelos Animais de Doenças , HipocampoRESUMO
Sports-related concussion (SRC) is a serious health concern. However, the temporal profile of neuropathophysiological changes after SRC and how these relate to biological sex are still poorly understood. This preliminary study investigated whether diffusion-weighted magnetic resonance imaging (dMRI) was sensitive to neuropathophysiological changes following SRC; whether these changes were sex-specific; and whether they persisted beyond the resolution of self-reported symptoms. Recently concussed athletes (n = 14), and age- and education-matched nonconcussed control athletes (n = 16), underwent MRI 24-48-h postinjury and again at 2-week postinjury (i.e., when cleared to return-to-play). Male athletes reported more symptoms and greater symptom severity compared with females. dMRI revealed white matter differences between athletes with SRC and their nonconcussed counterparts at 48-h postinjury. These differences were still present at 2-week postinjury, despite SRC athletes being cleared to return to play and may indicate increased cerebral vulnerability beyond the resolution of subjective symptoms. Furthermore, we identified sex-specific differences, with male SRC athletes having significantly greater white matter disruption compared with female SRC athletes. These results have important implications for the management of concussion, including guiding return-to-play decisions, and further improve our understanding regarding the role of sex in SRC outcomes.
Assuntos
Traumatismos em Atletas/diagnóstico por imagem , Concussão Encefálica/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adolescente , Adulto , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Autorrelato , Caracteres Sexuais , Futebol/lesões , Adulto JovemRESUMO
Sports-related concussion (SRC) is a form of mild traumatic brain injury that has been linked to long-term neurological abnormalities. Australian rules football is a collision sport with wide national participation and is growing in popularity worldwide. However, the chronic neurological consequences of SRC in Australian footballers remain poorly understood. This study investigated the presence of brain abnormalities in Australian footballers with a history of sports-related concussion (HoC) using multimodal MRI. Male Australian footballers with HoC (n = 26), as well as noncollision sport athletes with no HoC (n = 27), were recruited to the study. None of the footballers had sustained a concussion in the preceding 6 months, and all players were asymptomatic. Data were acquired using a 3T MRI scanner. White matter integrity was assessed using diffusion tensor imaging. Cortical thickness, subcortical volumes, and cavum septum pellucidum (CSP) were analyzed using structural MRI. Australian footballers had evidence of widespread microstructural white matter damage and cortical thinning. No significant differences were found regarding subcortical volumes or CSP. These novel findings provide evidence of persisting white and gray matter abnormalities in Australian footballers with HoC, and raise concerns related to the long-term neurological health of these athletes.
Assuntos
Traumatismos em Atletas , Concussão Encefálica , Substância Branca , Traumatismos em Atletas/diagnóstico por imagem , Austrália , Concussão Encefálica/diagnóstico por imagem , Imagem de Tensor de Difusão , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Substância Branca/diagnóstico por imagemRESUMO
A history of mild traumatic brain injury (mTBI) is linked to a number of chronic neurological conditions, however there is still much unknown about the underlying mechanisms. To provide new insights, this study used a clinically relevant model of repeated mTBI in rats to characterize the acute and chronic neuropathological and neurobehavioral consequences of these injuries. Rats were given four sham-injuries or four mTBIs and allocated to 7-day or 3.5-months post-injury recovery groups. Behavioral analysis assessed sensorimotor function, locomotion, anxiety, and spatial memory. Neuropathological analysis included serum quantification of neurofilament light (NfL), mass spectrometry of the hippocampal proteome, and ex vivo magnetic resonance imaging (MRI). Repeated mTBI rats had evidence of acute cognitive deficits and prolonged sensorimotor impairments. Serum NfL was elevated at 7 days post injury, with levels correlating with sensorimotor deficits; however, no NfL differences were observed at 3.5 months. Several hippocampal proteins were altered by repeated mTBI, including those associated with energy metabolism, neuroinflammation, and impaired neurogenic capacity. Diffusion MRI analysis at 3.5 months found widespread reductions in white matter integrity. Taken together, these findings provide novel insights into the nature and progression of repeated mTBI neuropathology that may underlie lingering or chronic neurobehavioral deficits.
Assuntos
Comportamento Animal , Concussão Encefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Animais , Ansiedade , Concussão Encefálica/metabolismo , Concussão Encefálica/patologia , Concussão Encefálica/fisiopatologia , Imagem de Tensor de Difusão , Modelos Animais de Doenças , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Locomoção , Imageamento por Ressonância Magnética , Proteínas de Neurofilamentos/sangue , Proteômica , Ratos , Recidiva , Memória Espacial , Substância Branca/diagnóstico por imagemRESUMO
OBJECTIVES: To study the effects of the selective TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF), on fracture healing in mice and on an osteoprogenitor cell line, Kusa4b10, in vitro. METHODS: Mice received unilateral closed mid-shaft tibial fractures and treated for two weeks with vehicle or 5 mg/kg/day DHF and euthanised at 28 days post-fracture. Calluses were analysed by micro-computed tomography (µCT) and three-point bending biomechanical test. Kusa4b10 cells were cultured with 50nM of 7,8-DHF or vehicle for 3-, 7-, 14-days for RT-PCR, and 21 days for mineralization. RESULTS: µCT found 7,8-DHF calluses had decreased tissue volume (p=0.042), mean polar moment of inertia (p = 0.004), and mean cross-sectional area (p=0.042) compared to controls. At 28 days biomechanical analyses showed 7,8-DHF treatment decreased peak force (p=0.011) and stiffness per unit area (p=0.012). 7,8-DHF treatment did not change Kusa4b10 gene expression of Runx2 and alkaline phosphatase at all time points, nor mineralization. CONCLUSIONS: 7,8-DHF treatment had a negative impact on fracture healing at 28 days post-fracture via an unknown mechanism. 7,8-DHF may have had a central role in impairing fracture healing.
Assuntos
Consolidação da Fratura , Animais , Flavonas , Camundongos , Microtomografia por Raio-XRESUMO
Pain is evolutionarily necessary for survival in that it reduces tissue damage by signaling the body to respond to a harmful stimulus. However, in many circumstances, acute pain becomes chronic, and this is often dysfunctional. Adolescent chronic pain is a growing epidemic with an unknown etiology and limited effective treatment options. Given that the relationship between acute pain and chronic pain is not straightforward, there is a need to better understand the factors that contribute to the chronification of pain. Since early life factors are critical to a variety of outcomes in the developmental and adolescent periods, they pose promise as potential mechanisms that may underlie the transition from acute to chronic pain. This review examines two early life factors: poor diet and adverse childhood experiences (ACEs); they may increase susceptibility to the development of chronic pain following surgical procedures or traumatic brain injury (TBI). Beyond their high prevalence, surgical procedures and TBI are ideal models to prospectively understand mechanisms underlying the transition from acute to chronic pain. Common themes that emerged from the examination of poor diet and ACEs as mechanisms underlying this transition included: prolonged inflammation and microglia activation leading to sensitization of the pain system, and stress-induced alterations to hypothalamic-pituitary-adrenal axis function, where cortisol is likely playing a role in the development of chronic pain. These areas provide promising targets for interventions, the development of diagnostic biomarkers, and suggest that biological treatment strategies should focus on regulating the neuroinflammatory and stress responses in an effort to modulate and prevent the development of chronic pain.
Assuntos
Experiências Adversas da Infância/psicologia , Lesões Encefálicas Traumáticas/fisiopatologia , Dor Crônica/fisiopatologia , Dieta , Adolescente , Lesões Encefálicas Traumáticas/complicações , Dor Crônica/complicações , Humanos , Sistema Hipotálamo-Hipofisário/crescimento & desenvolvimento , Sistema Hipófise-Suprarrenal/crescimento & desenvolvimentoRESUMO
PRIMARY OBJECTIVE: This study characterized the acute and chronic effects of tau reduction in traumatic brain injury (TBI). RESEARCH DESIGN: A fluid percussion injury (FPI) or a sham-injury was administered to wild type (WT) or tau knockout (Tau-/-) mice. Mice were assigned to a one-week or twelve-week recovery period before behavioral testing and analysis of brain tissue. METHODS AND PROCEDURES: Mice were tested on the elevated-plus maze, the Y-maze, and rotarod. The twelve-week recovery mice underwent in vivo MRI. Phosphorylated tau in brain tissue was analyzed post-mortem using western blots. MAIN OUTCOMES AND RESULTS: FPI mice, regardless of genotype, had abnormalities on the elevated-plus maze (a task to assess anxiety-like behavior) at one-week post-injury. However, after twelve-weeks recovery, the Tau-/- mice that were given an FPI were less anxious and had improved motor function compared to their WT counterparts. MRI analysis found that while all FPI mice had brain damage, the Tau-/- mice had larger hippocampal volumes. The WT+FPI mice also had increased phosphorylated tau compared to WT+sham mice at both the one-week and twelve-week recovery times. CONCLUSION: These findings suggest that tau may play an important role in some of the consequences of TBI, particularly the long-term functional deficits.
Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Encéfalo/diagnóstico por imagem , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/genética , Modelos Animais de Doenças , Camundongos , PercussãoRESUMO
Posttraumatic epilepsy (PTE) is one of the most debilitating and understudied consequences of traumatic brain injury (TBI). It is challenging to study the effects, underlying pathophysiology, biomarkers, and treatment of TBI and PTE purely in human patients for a number of reasons. Rodent models can complement human PTE studies as they allow for the rigorous investigation into the causal relationship between TBI and PTE, the pathophysiological mechanisms of PTE, the validation and implementation of PTE biomarkers, and the assessment of PTE treatments, in a tightly controlled, time- and cost-efficient manner in experimental subjects known to be experiencing epileptogenic processes. This article will review several common rodent models of TBI and/or PTE, including their use in previous studies and discuss their relative strengths, limitations, and avenues for future research to advance our understanding and treatment of PTE.
Assuntos
Lesões Encefálicas Traumáticas/fisiopatologia , Modelos Animais de Doenças , Epilepsia Pós-Traumática/fisiopatologia , Animais , Biomarcadores , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico , Epilepsia Pós-Traumática/diagnóstico , Epilepsia Pós-Traumática/etiologia , Humanos , Camundongos , Ratos , Fatores de Risco , Pesquisa Translacional BiomédicaRESUMO
Initial studies suggest that increased age is associated with worse outcomes after traumatic brain injury (TBI), though the pathophysiological mechanisms responsible for this remain unclear. Immunosenescence (i.e., dysregulation of the immune system due to aging) may play a significant role in influencing TBI outcomes. This study therefore examined neurological outcomes and immune response in young-adult (i.e., 10â¯weeks old) compared to middle-aged (i.e., 1â¯year old) rats following a TBI (i.e., fluid percussion) or sham-injury. Rats were euthanized at either 24â¯h or one-week post-injury to analyze immune cell populations in the brain and periphery via flow cytometry, as well as telomere length (i.e., a biomarker of neurological health). Behavioral testing, as well as volumetric and diffusion-weighted MRI, were also performed in the one-week recovery rats to assess for functional deficits and brain damage. Middle-aged rats had worse sensorimotor deficits and shorter telomeres after TBI compared to young rats. Both aging and TBI independently worsened cognitive function and cortical volume. These changes occurred in the presence of fewer total leukocytes, fewer infiltrating myeloid cells, and fewer microglia in the brains of middle-aged TBI rats compared to young rats. These findings indicate that middle-aged rats have worse sensorimotor deficits and shorter telomeres after TBI than young rats, and this may be related to an altered neuroimmune response. Although further studies are required, these findings have important implications for understanding the pathophysiology and optimal treatment strategies in TBI patients across the life span.
Assuntos
Lesões Encefálicas Traumáticas/imunologia , Neuroimunomodulação/imunologia , Recuperação de Função Fisiológica/imunologia , Fatores Etários , Animais , Encéfalo/fisiopatologia , Lesões Encefálicas Traumáticas/metabolismo , Cognição/fisiologia , Transtornos Cognitivos/complicações , Modelos Animais de Doenças , Masculino , Microglia/imunologia , Microglia/metabolismo , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia , Homeostase do Telômero/imunologia , Resultado do TratamentoRESUMO
Traumatic brain injury triggers neuroinflammation that may contribute to progressive neurodegeneration. We investigated patterns of recruitment of astrocytes and microglia to inflammation after brain trauma by firstly characterising expression profiles over time of marker genes following TBI, and secondly by monitoring glial morphologies reflecting inflammatory responses in a rat model of traumatic brain injury (i.e. the lateral fluid percussion injury). Gene expression profiles revealed early elevation of expression of astrocytic marker glial fibrillary acidic protein relative to microglial marker allograft inflammatory factor 1 (also known as ionized calcium-binding adapter molecule 1). Adult rat brains collected at day 7 after injury were processed for immunohistochemistry with allograft inflammatory factor 1, glial fibrillary acidic protein and complement C3 (marker of bad/disruptive astrocytic A1 phenotype). Astrocytes positive for glial fibrillary acidic protein and complement C3 were significant increased in the injured cortex and displayed more complex patterns of arbourisation with significantly increased bifurcations. Our observations suggested that traumatic brain injury changed the phenotype of microglia from a ramified appearance with long, thin, highly branched processes to a swollen amoeboid shape in the injured cortex. These findings suggest differential glial activation with astrocytes likely undergoing strategic changes in morphology and function. Whilst a detailed analysis is needed of temporal patterns of glial activation, ours is the first evidence of a role for the bad/disruptive astrocytic A1 phenotype in an open head model of traumatic brain injury.
Assuntos
Astrócitos/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Inflamação/metabolismo , Microglia/metabolismo , Animais , Astrócitos/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Complemento C3/metabolismo , Equidae , Proteína Glial Fibrilar Ácida/metabolismo , Cabras , Masculino , Camundongos , Microglia/patologia , Coelhos , Ratos Sprague-DawleyRESUMO
OBJECTIVES: To study effects of the selective TrkA agonist, gambogic amide (GA), on fracture healing in mice and on an osteoprogenitor cell line in vitro. METHODS: Mice were given bilateral fibular fractures and treated for two weeks with vehicle or 1 mg/kg/day GA and euthanized at 14-, 21-, and 42-days post-fracture. Calluses were analysed by micro-computed tomography (µCT), three-point bending and histology. For RT-PCR analyses, Kusa O cells were treated with 0.5nM of GA or vehicle for 3, 7, and 14 days, while for mineralization assessment, cells were treated for 21 days. RESULTS: µCT analysis found that 21-day GA-treated calluses had both decreased tissue volume (p<0.05) and bone surface (p<0.05) and increased fractional bone volume (p<0.05) compared to controls. Biomechanical analyses of 42-day calluses revealed that GA treatment increased stiffness per unit area by 53% (p<0.01) and load per unit area by 52% (p<0.01). GA treatment increased Kusa O gene expression of alkaline phosphatase and osteocalcin (p<0.05) by 14 days as well as mineralization at 21 days (p<0.05). CONCLUSIONS: GA treatment appeared to have a beneficial effect on fracture healing at 21- and 42-days post-fracture. The exact mechanism is not yet understood but may involve increased osteoblastic differentiation and matrix mineralization.
Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Consolidação da Fratura/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Xantonas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Consolidação da Fratura/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/citologia , Receptor trkA/agonistasRESUMO
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, and typically involves a robust immune response. Although a great deal of preclinical research has been conducted to identify an effective treatment, all phase III clinical trials have been unsuccessful to date. These translational shortcomings are in part due to a failure to recognize and account for the heterogeneity of TBI, including how extracranial factors can influence the aftermath of TBI. For example, most preclinical studies have utilized isolated TBI models in young adult males, while clinical trials typically involve highly heterogeneous patient populations (e.g., different mechanisms of injury, a range of ages, presence of polytrauma or infection). This paper will review the current, albeit limited literature related to how TBI is affected by common concomitant immunological stressors. In particular, discussion will focus on whether extracranial trauma (i.e., polytrauma), infection, and age/immunosenescence can influence TBI pathophysiology, and thereby may result in a different brain injury than what would have occurred in an isolated TBI. It is concluded that these immunological stressors are all likely to be TBI modifiers that should be further studied and could impact translational treatment strategies.
Assuntos
Lesões Encefálicas Traumáticas/imunologia , Proteínas de Drosophila/imunologia , Cadeias alfa de Integrinas/imunologia , Animais , Humanos , Modelos AnimaisRESUMO
Traumatic brain injury (TBI) has been suggested to increase the risk of amyotrophic lateral sclerosis (ALS). However, this link remains controversial and as such, here we performed experimental moderate TBI in rats and assessed for the presence of ALS-like pathological and functional abnormalities at both 1 and 12 weeks post-injury. Serial in-vivo magnetic resonance imaging (MRI) demonstrated that rats given a TBI had progressive atrophy of the motor cortices and degeneration of the corticospinal tracts compared with sham-injured rats. Immunofluorescence analyses revealed a progressive reduction in neurons, as well as increased phosphorylated transactive response DNA-binding protein 43 (TDP-43) and cytoplasmic TDP-43, in the motor cortex of rats given a TBI. Rats given a TBI also had fewer spinal cord motor neurons, increased expression of muscle atrophy markers, and altered muscle fiber contractile properties compared with sham-injured rats at 12 weeks, but not 1 week, post-injury. All of these changes occurred in the presence of persisting motor deficits. These findings resemble some of the pathological and functional abnormalities common in ALS and support the notion that TBI can result in a progressive neurodegenerative disease process pathologically bearing similarities to a motor neuron disease.
Assuntos
Lesões Encefálicas Traumáticas/complicações , Córtex Motor/fisiopatologia , Doença dos Neurônios Motores/fisiopatologia , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Masculino , Doença dos Neurônios Motores/etiologia , Ratos Long-Evans , Medula Espinal/fisiopatologiaRESUMO
OBJECTIVES: There is evidence that treatment with nerve growth factor (NGF) may reduce neuroinflammation and apoptosis after a traumatic brain injury (TBI). NGF is thought to exert its effects via binding to either TrkA or p75 neurotrophin receptors. This study aimed to investigate the effects of a selective TrkA agonist, gambogic amide (GA), on TBI pathology and outcomes in mice following lateral fluid percussion injury. METHODS: Male C57BL/6 mice were given either a TBI or sham injury, and then received subcutaneous injections of either 2 mg/kg of GA or vehicle at 1, 24, and 48 h post-injury. Following behavioural studies, mice were euthanized at 72 h post-injury for analysis of neuroinflammatory, apoptotic, and neurite outgrowth markers. RESULTS: Behavioural testing revealed that GA did not mitigate motor deficits after TBI. TBI caused an increase in cortical and hippocampal expression of several markers of neuroinflammation and apoptosis compared to sham groups. GA treatment did not attenuate these increases in expression, possibly contributed to by our finding of TrkA receptor down-regulation post-TBI. CONCLUSIONS: These findings suggest that GA treatment may not be suitable for attenuating TBI pathology and improving outcomes.
Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Receptor trkA/agonistas , Xantonas/uso terapêutico , Análise de Variância , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/fisiopatologia , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptor trkA/genética , Receptor trkA/metabolismo , Teste de Desempenho do Rota-Rod , Resultado do TratamentoRESUMO
Traumatic brain injury (TBI) and long bone fracture are common in polytrauma. This injury combination in mice results in elevated levels of the pro-inflammatory cytokine interleukin-1ß (IL-1ß) and exacerbated neuropathology when compared to isolated-TBI. Here we examined the effect of treatment with an IL-1 receptor antagonist (IL-1ra) in mice given a TBI and a concomitant tibial fracture (i.e., polytrauma). Adult male C57BL/6 mice were given sham-injuries or polytrauma and treated with saline-vehicle or IL-1ra (100mg/kg). Treatments were subcutaneously injected at 1, 6, and 24h, and then once daily for one week post-injury. 7-8 mice/group were euthanized at 48h post-injury. 12-16 mice/group underwent behavioral testing at 12weeks post-injury and MRI at 14weeks post-injury before being euthanized at 16weeks post-injury. At 48h post-injury, markers for activated microglia and astrocytes, as well as neutrophils and edema, were decreased in polytrauma mice treated with IL-1ra compared to polytrauma mice treated with vehicle. At 14weeks post-injury, MRI analysis demonstrated that IL-1ra treatment after polytrauma reduced volumetric loss in the injured cortex and mitigated track-weighted MRI markers for axonal injury. As IL-1ra (Anakinra) is approved for human use, it may represent a promising therapy in polytrauma cases involving TBI and fracture.
Assuntos
Anti-Inflamatórios/administração & dosagem , Lesões Encefálicas Traumáticas/complicações , Encefalite/tratamento farmacológico , Proteína Antagonista do Receptor de Interleucina 1/administração & dosagem , Traumatismo Múltiplo/complicações , Fraturas da Tíbia/complicações , Animais , Atrofia/complicações , Comportamento Animal , Edema Encefálico/complicações , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Encefalite/etiologia , Encefalite/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismoRESUMO
Mild traumatic brain injury (mTBI) involves damage to the cerebrovascular system. Vascular endothelial growth factor-A (VEGF-A) is an important modulator of vascular health and VEGF-A promotes the brain's ability to recover after more severe forms of brain injury; however, the role of VEGF-A in mTBI remains poorly understood. Bevacizumab (BEV) is a monoclonal antibody that binds to VEGF-A and neutralises its actions. To better understand the role of VEGF-A in mTBI recovery, this study examined how BEV treatment affected outcomes in rats given a mTBI. Adult Sprague-Dawley rats were assigned to sham-injury + vehicle treatment (VEH), sham-injury + BEV treatment, mTBI + VEH treatment, mTBI + BEV treatment groups. Treatment was administered intracerebroventricularly via a cannula beginning at the time of injury and continuing until the end of the study. Rats underwent behavioral testing after injury and were euthanized on day 11. In both females and males, BEV had a negative impact on cognitive function. mTBI and BEV treatment increased the expression of inflammatory markers in females. In males, BEV treatment altered markers related to hypoxia and vascular health. These novel findings of sex-specific responses to BEV and mTBI provide important insights into the role of VEGF-A in mTBI.
Assuntos
Concussão Encefálica , Masculino , Feminino , Ratos , Animais , Bevacizumab , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ratos Sprague-Dawley , Modelos Animais de DoençasRESUMO
Sodium selenate (SS) activates protein phosphatase 2 (PP2A) and reduces phosphorylated tau (pTAU) and late post-traumatic seizures after lateral fluid percussion injury (LFPI). In EpiBioS4Rx Project 2, a multi-center international study for post-traumatic targets, biomarkers, and treatments, we tested the target relevance and modification by SS of pTAU forms and PP2A and in the LFPI model, at two sites: Einstein and Melbourne. In Experiment 1, adult male rats were assigned to LFPI and sham (both sites) and naïve controls (Einstein). Motor function was monitored by neuroscores. Brains were studied with immunohistochemistry (IHC), Western blots (WBs), or PP2A activity assay, from 2 days to 8 weeks post-operatively. In Experiment 2, LFPI rats received SS for 7 days (SS0.33: 0.33 mg/kg/day; SS1: 1 mg/kg/day, subcutaneously) or vehicle (Veh) post-LFPI and pTAU, PR55 expression, or PP2A activity were studied at 2 days and 1 week (on treatment), or 2 weeks (1 week off treatment). Plasma selenium and SS levels were measured. In Experiment 1 IHC, LFPI rats had higher cortical pTAU-Ser202/Thr205-immunoreactivity (AT8-ir) and pTAU-Ser199/202-ir at 2 days, and pTAU-Thr231-ir (AT180-ir) at 2 days, 2 weeks, and 8 weeks, ipsilaterally to LFPI, than controls. LFPI-2d rats also had higher AT8/total-TAU5-ir in cortical extracts ipsilateral to the lesion (WB). PP2A (PR55-ir) showed time- and region-dependent changes in IHC, but not in WB. PP2A activity was lower in LFPI-1wk than in sham rats. In Experiment 2, SS did not affect neuroscores or cellular AT8-ir, AT180-ir, or PR55-ir in IHC. In WB, total cortical AT8/total-TAU-ir was lower in SS0.33 and SS1 LFPI rats than in Veh rats (2 days, 1 week); total cortical PR55-ir (WB) and PP2A activity were higher in SS1 than Veh rats (2 days). SS dose dependently increased plasma selenium and SS levels. Concordant across-sites data confirm time and pTAU form-specific cortical increases ipsilateral to LFPI. The discordant SS effects may either suggest SS-induced reduction in the numbers of cells with increased pTAU-ir, need for longer treatment, or the involvement of other mechanisms of action.
Assuntos
Lesões Encefálicas Traumáticas , Selênio , Ratos , Masculino , Animais , Ácido Selênico/farmacologia , Fosforilação , Proteínas tau/metabolismo , Córtex Cerebral/metabolismoRESUMO
OBJECTIVE: Project 1 of the Preclinical Multicenter Epilepsy Bioinformatics Study for Antiepileptogenic Therapy (EpiBioS4Rx) consortium aims to identify preclinical biomarkers for antiepileptogenic therapies following traumatic brain injury (TBI). The international participating centers in Finland, Australia, and the United States have made a concerted effort to ensure protocol harmonization. Here, we evaluate the success of harmonization process by assessing the timing, coverage, and performance between the study sites. METHOD: We collected data on animal housing conditions, lateral fluid-percussion injury model production, postoperative care, mortality, post-TBI physiological monitoring, timing of blood sampling and quality, MR imaging timing and protocols, and duration of video-electroencephalography (EEG) follow-up using common data elements. Learning effect in harmonization was assessed by comparing procedural accuracy between the early and late stages of the project. RESULTS: The animal housing conditions were comparable between the study sites but the postoperative care procedures varied. Impact pressure, duration of apnea, righting reflex, and acute mortality differed between the study sites (p < 0.001). The severity of TBI on D2 post TBI assessed using the composite neuroscore test was similar between the sites, but recovery of acute somato-motor deficits varied (p < 0.001). A total of 99% of rats included in the final cohort in UEF, 100% in Monash, and 79% in UCLA had blood samples taken at all time points. The timing of sampling differed on day (D)2 (p < 0.05) but not D9 (p > 0.05). Plasma quality was poor in 4% of the samples in UEF, 1% in Monash and 14% in UCLA. More than 97% of the final cohort were MR imaged at all timepoints in all study sites. The timing of imaging did not differ on D2 and D9 (p > 0.05), but varied at D30, 5 months, and ex vivo timepoints (p < 0.001). The percentage of rats that completed the monthly high-density video-EEG follow-up and the duration of video-EEG recording on the 7th post-injury month used for seizure detection for diagnosis of post-traumatic epilepsy differed between the sites (p < 0.001), yet the prevalence of PTE (UEF 21%, Monash 22%, UCLA 23%) was comparable between the sites (p > 0.05). A decrease in acute mortality and increase in plasma quality across time reflected a learning effect in the TBI production and blood sampling protocols. SIGNIFICANCE: Our study is the first demonstration of the feasibility of protocol harmonization for performing powered preclinical multi-center trials for biomarker and therapy discovery of post-traumatic epilepsy.
Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Animais , Ratos , Biomarcadores , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Modelos Animais de Doenças , Epilepsia/etiologia , Epilepsia/diagnóstico , Epilepsia Pós-Traumática/etiologia , Epilepsia Pós-Traumática/tratamento farmacológico , Convulsões , Estudos Multicêntricos como AssuntoRESUMO
Traumatic brain injury (TBI) survivors often experience debilitating consequences. Due to the high impact nature of TBI, patients often experience concomitant peripheral injuries (ie, polytrauma). A common, yet often overlooked, comorbidity of TBI is chronic pain. Therefore, this study investigated how common concomitant peripheral injuries (ie, femoral fracture and muscle crush) can affect long-term behavioral and structural TBI outcomes with a particular focus on nociception. Rats were randomly assigned to 1 of 4 groups: polytrauma (POLY; ie, fracture + muscle crush + TBI), peripheral injury (PERI; ie, fracture + muscle crush + sham TBI), TBI (ie, sham fracture + sham muscle crush + TBI), and sham-injured (SHAM; ie, sham fracture + sham muscle crush + sham TBI). Rats underwent behavioral testing at 3-, 6-, and 11-weeks postinjury, and were then euthanized for postmortem magnetic resonance imaging (MRI). POLY rats had a persisting increase in pain sensitivity compared to all groups on the von Frey test. MRI revealed that POLY rats also had abnormalities in the cortical and subcortical brain structures involved in nociceptive processing. These findings have important implications and provide a foundation for future studies to determine the underlying mechanisms and potential treatment strategies for chronic pain in TBI survivors. PERSPECTIVE: Rats with TBI and concomitant peripheral trauma displayed chronic nociceptive pain and MRI images also revealed damaged brain structures/pathways that are involved in chronic pain development. This study highlights the importance of polytrauma and the affected brain regions for developing chronic pain.