Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
J Biol Chem ; 299(12): 105378, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866635

RESUMO

Membrane contact sites (MCSs) between endosomes and the endoplasmic reticulum (ER) are thought to act as specialized trigger zones for Ca2+ signaling, where local Ca2+ released via endolysosomal ion channels is amplified by ER Ca2+-sensitive Ca2+ channels into global Ca2+ signals. Such amplification is integral to the action of the second messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). However, functional regulators of inter-organellar Ca2+ crosstalk between endosomes and the ER remain poorly defined. Here, we identify progesterone receptor membrane component 1 (PGRMC1), an ER transmembrane protein that undergoes a unique heme-dependent dimerization, as an interactor of the endosomal two pore channel, TPC1. NAADP-dependent Ca2+ signals were potentiated by PGRMC1 overexpression through enhanced functional coupling between endosomal and ER Ca2+ stores and inhibited upon PGRMC1 knockdown. Point mutants in PGMRC1 or pharmacological manipulations that reduced its interaction with TPC1 were without effect. PGRMC1 therefore serves as a TPC1 interactor that regulates ER-endosomal coupling with functional implications for cellular Ca2+ dynamics and potentially the distribution of heme.


Assuntos
Sinalização do Cálcio , Retículo Endoplasmático , Endossomos , Receptores de Progesterona , Humanos , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Heme/metabolismo , Lisossomos/metabolismo , NADP/metabolismo , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
2.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791182

RESUMO

Sigma non-opioid intracellular receptor 1 (Sigma-1R) is an intracellular chaperone protein residing on the endoplasmic reticulum at the mitochondrial-associated membrane (MAM) region. Sigma-1R is abundant in the brain and is involved in several physiological processes as well as in various disease states. The role of Sigma-1R at the blood-brain barrier (BBB) is incompletely characterized. In this study, the effect of Sigma-1R activation was investigated in vitro on rat brain microvascular endothelial cells (RBMVEC), an important component of the blood-brain barrier (BBB), and in vivo on BBB permeability in rats. The Sigma-1R agonist PRE-084 produced a dose-dependent increase in mitochondrial calcium, and mitochondrial and cytosolic reactive oxygen species (ROS) in RBMVEC. PRE-084 decreased the electrical resistance of the RBMVEC monolayer, measured with the electric cell-substrate impedance sensing (ECIS) method, indicating barrier disruption. These effects were reduced by pretreatment with Sigma-1R antagonists, BD 1047 and NE 100. In vivo assessment of BBB permeability in rats indicates that PRE-084 produced a dose-dependent increase in brain extravasation of Evans Blue and sodium fluorescein brain; the effect was reduced by the Sigma-1R antagonists. Immunocytochemistry studies indicate that PRE-084 produced a disruption of tight and adherens junctions and actin cytoskeleton. The brain microcirculation was directly visualized in vivo in the prefrontal cortex of awake rats with a miniature integrated fluorescence microscope (aka, miniscope; Doric Lenses Inc.). Miniscope studies indicate that PRE-084 increased sodium fluorescein extravasation in vivo. Taken together, these results indicate that Sigma-1R activation promoted oxidative stress and increased BBB permeability.


Assuntos
Barreira Hematoencefálica , Receptor Sigma-1 , Animais , Masculino , Ratos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/irrigação sanguínea , Cálcio/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Mitocôndrias/metabolismo , Morfolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptor Sigma-1/genética , Receptor Sigma-1/metabolismo
3.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216375

RESUMO

Omega-3 polyunsaturated fatty acids (n-3 PUFAs), obtained from diet and dietary supplements, have been tested in clinical trials for the prevention or treatment of several diseases. n-3 PUFAs exert their effects by activation of free fatty acid (FFA) receptors. FFA1 receptor, expressed in the pancreas and brain, is activated by medium- to long-chain fatty acids. Despite some beneficial effects on cognition, the effects of n-3 PUFAs on the blood-brain barrier (BBB) are not clearly understood. We examined the effects of FFA1 activation on BBB permeability in vitro, using rat brain microvascular endothelial cells (RBMVEC), and in vivo, by assessing Evans Blue extravasation and by performing live imaging of brain microcirculation in adult rats. AMG837, a synthetic FFA1 agonist, produced a dose-dependent decrease in RBMVEC monolayer resistance assessed with Electric Cell-Substrate Impedance Sensing (ECIS); the effect was attenuated by the FFA1 antagonist, GW1100. Immunofluorescence studies revealed that AMG837 produced a disruption in tight and adherens junction proteins. AMG837 increased Evans Blue content in the rat brain in a dose-dependent manner. Live imaging studies of rat brain microcirculation with miniaturized fluorescence microscopy (miniscope) showed that AMG837 increased extravasation of sodium fluorescein. Taken together, our results demonstrate that FFA1 receptor activation reduced RBMVEC barrier function and produced a transient increase in BBB permeability.


Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Permeabilidade Capilar/fisiologia , Células Endoteliais/metabolismo , Azul Evans/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Fluoresceína/metabolismo , Masculino , Microscopia de Fluorescência/métodos , Permeabilidade , Ratos , Ratos Sprague-Dawley
4.
Int J Mol Sci ; 22(10)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068146

RESUMO

Orexin A, an endogenous peptide involved in several functions including reward, acts via activation of orexin receptors OX1 and OX2, Gq-coupled GPCRs. We examined the effect of a selective OX1 agonist, OXA (17-33) on cytosolic calcium concentration, [Ca2+]i, in neurons of nucleus accumbens, an important area in the reward circuit. OXA (17-33) increased [Ca2+]i in a dose-dependent manner; the effect was prevented by SB-334867, a selective OX1 receptors antagonist. In Ca2+-free saline, the OXA (17-33)-induced increase in [Ca2+]i was not affected by pretreatment with bafilomycin A1, an endo-lysosomal calcium disrupter, but was blocked by 2-APB and xestospongin C, antagonists of inositol-1,4,5-trisphosphate (IP3) receptors. Pretreatment with VU0155056, PLD inhibitor, or BD-1047 and NE-100, Sigma-1R antagonists, reduced the [Ca2+]i response elicited by OXA (17-33). Cocaine potentiated the increase in [Ca2+]i by OXA (17-33); the potentiation was abolished by Sigma-1R antagonists. Our results support an additional signaling mechanism for orexin A-OX1 via choline-Sigma-1R and a critical role for Sigma-1R in the cocaine-orexin A interaction in nucleus accumbens neurons.


Assuntos
Colina/metabolismo , Cocaína/farmacologia , Neurônios/fisiologia , Núcleo Accumbens/fisiologia , Receptores de Orexina/metabolismo , Orexinas/metabolismo , Receptores sigma/metabolismo , Animais , Animais Recém-Nascidos , Regulação da Expressão Gênica , Neurônios/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Receptores de Orexina/genética , Orexinas/genética , Ratos , Ratos Sprague-Dawley , Receptores sigma/genética , Vasoconstritores/farmacologia , Receptor Sigma-1
5.
EMBO J ; 33(5): 501-11, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24502975

RESUMO

Lysosomal Ca(2+) homeostasis is implicated in disease and controls many lysosomal functions. A key in understanding lysosomal Ca(2+) signaling was the discovery of the two-pore channels (TPCs) and their potential activation by NAADP. Recent work concluded that the TPCs function as a PI(3,5)P2 activated channels regulated by mTORC1, but not by NAADP. Here, we identified Mg(2+) and the MAPKs, JNK and P38 as novel regulators of TPC2. Cytoplasmic Mg(2+) specifically inhibited TPC2 outward current, whereas lysosomal Mg(2+) partially inhibited both outward and inward currents in a lysosomal lumen pH-dependent manner. Under controlled Mg(2+), TPC2 is readily activated by NAADP with channel properties identical to those in response to PI(3,5)P2. Moreover, TPC2 is robustly regulated by P38 and JNK. Notably, NAADP-mediated Ca(2+) release in intact cells is regulated by Mg(2+), PI(3,5)P2, and P38/JNK kinases, thus paralleling regulation of TPC2 currents. Our data affirm a key role for TPC2 in NAADP-mediated Ca(2+) signaling and link this pathway to Mg(2+) homeostasis and MAP kinases, pointing to roles for lysosomal Ca(2+) in cell growth, inflammation and cancer.


Assuntos
Canais de Cálcio/metabolismo , Regulação Enzimológica da Expressão Gênica , MAP Quinase Quinase 4/metabolismo , Magnésio/metabolismo , NADP/análogos & derivados , Fosfatidilinositóis/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Homeostase , NADP/metabolismo
6.
EMBO Rep ; 17(2): 266-78, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26682800

RESUMO

Mutations in TRPML1 cause the lysosomal storage disease mucolipidosis type IV (MLIV). The role of TRPML1 in cell function and how the mutations cause the disease are not well understood. Most studies focus on the role of TRPML1 in constitutive membrane trafficking to and from the lysosomes. However, this cannot explain impaired neuromuscular and secretory cells' functions that mediate regulated exocytosis. Here, we analyzed several forms of regulated exocytosis in a mouse model of MLIV and, opposite to expectations, we found enhanced exocytosis in secretory glands due to enlargement of secretory granules in part due to fusion with lysosomes. Preliminary exploration of synaptic vesicle size, spontaneous mEPSCs, and glutamate secretion in neurons provided further evidence for enhanced exocytosis that was rescued by re-expression of TRPML1 in neurons. These features were not observed in Niemann-Pick type C1. These findings suggest that TRPML1 may guard against pathological fusion of lysosomes with secretory organelles and suggest a new approach toward developing treatment for MLIV.


Assuntos
Exocitose , Lisossomos/metabolismo , Mucolipidoses/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Vesículas Secretórias/metabolismo , Animais , Células Cultivadas , Potenciais Pós-Sinápticos Excitadores , Ácido Glutâmico/metabolismo , Camundongos , Potenciais Pós-Sinápticos em Miniatura , Mucolipidoses/genética , Neurônios/metabolismo , Neurônios/fisiologia , Doença de Niemann-Pick Tipo C/genética , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
7.
J Cell Sci ; 128(2): 232-8, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25416817

RESUMO

Two-pore channels (TPCs) are endolysosomal ion channels implicated in Ca(2+) signalling from acidic organelles. The relevance of these ubiquitous proteins for human disease, however, is unclear. Here, we report that lysosomes are enlarged and aggregated in fibroblasts from Parkinson disease patients with the common G2019S mutation in LRRK2. Defects were corrected by molecular silencing of TPC2, pharmacological inhibition of TPC regulators [Rab7, NAADP and PtdIns(3,5)P2] and buffering local Ca(2+) increases. NAADP-evoked Ca(2+) signals were exaggerated in diseased cells. TPC2 is thus a potential drug target within a pathogenic LRRK2 cascade that disrupts Ca(2+)-dependent trafficking in Parkinson disease.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/genética , Doença de Parkinson/genética , Proteínas Serina-Treonina Quinases/metabolismo , Cálcio/metabolismo , Canais de Cálcio/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Células HEK293 , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Lisossomos/metabolismo , Lisossomos/patologia , NADP/análogos & derivados , NADP/genética , NADP/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Cultura Primária de Células , Proteínas Serina-Treonina Quinases/genética
8.
Biochem Biophys Res Commun ; 490(4): 1389-1393, 2017 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-28698140

RESUMO

Interest in lipoamino acids as endogenous modulators of G-protein coupled receptors has escalated due to their involvement in a variety of physiologic processes. In particular, a role for these amino acid conjugates has emerged in the endocannabinoid system. The study presented herein investigated the effects of N-arachidonoyl glycine (NAGly) on a candidate endocannabinoid receptor, GPR55. Our novel findings reveal that NAGly induces concentration dependent increases in calcium mobilization and mitogen-activated protein kinase activities in HAGPR55/CHO cells. These increases were attenuated by the selective GPR55 antagonist ML193 (N-[4-[[(3,4-Dimethyl-5-isoxazolyl)amino]sulfonyl]phenyl]-6,8-dimethyl-2-(2-pyridinyl)-4-quinolinecarboxamide), supporting receptor mediated signaling. To our knowledge this is the first report identifying GPR55 as a target of the endogenous lipoamino acid, NAGly.


Assuntos
Ácidos Araquidônicos/farmacologia , Cálcio/metabolismo , Glicina/análogos & derivados , Receptores Acoplados a Proteínas G/genética , Animais , Células CHO , Cricetulus , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica , Glicina/farmacologia , Humanos , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Cinética , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Quinolinas/farmacologia , Receptores de Canabinoides , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
9.
Biochem J ; 473(1): 1-5, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26467159

RESUMO

Sigma-1 receptor (Sig-1R) is an intracellular chaperone protein with many ligands, located at the endoplasmic reticulum (ER). Binding of cocaine to Sig-1R has previously been found to modulate endothelial functions. In the present study, we show that cocaine dramatically inhibits store-operated Ca(2+) entry (SOCE), a Ca(2+) influx mechanism promoted by depletion of intracellular Ca(2+) stores, in rat brain microvascular endothelial cells (RBMVEC). Using either Sig-1R shRNA or pharmacological inhibition with the unrelated Sig-1R antagonists BD-1063 and NE-100, we show that cocaine-induced SOCE inhibition is dependent on Sig-1R. In addition to revealing new insight into fundamental mechanisms of cocaine-induced changes in endothelial function, these studies indicate an unprecedented role for Sig-1R as a SOCE inhibitor.


Assuntos
Cálcio/metabolismo , Cocaína/farmacologia , Células Endoteliais/metabolismo , Microvasos/metabolismo , Receptores sigma/fisiologia , Animais , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Ratos , Receptores sigma/agonistas , Receptor Sigma-1
10.
Proc Natl Acad Sci U S A ; 111(36): 13087-92, 2014 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-25157141

RESUMO

The two-pore channels (TPC1 and TPC2) belong to an ancient family of intracellular ion channels expressed in the endolysosomal system. Little is known about how regulatory inputs converge to modulate TPC activity, and proposed activation mechanisms are controversial. Here, we compiled a proteomic characterization of the human TPC interactome, which revealed that TPCs complex with many proteins involved in Ca(2+) homeostasis, trafficking, and membrane organization. Among these interactors, TPCs were resolved to scaffold Rab GTPases and regulate endomembrane dynamics in an isoform-specific manner. TPC2, but not TPC1, caused a proliferation of endolysosomal structures, dysregulating intracellular trafficking, and cellular pigmentation. These outcomes required both TPC2 and Rab activity, as well as their interactivity, because TPC2 mutants that were inactive, or rerouted away from their endogenous expression locale, or deficient in Rab binding, failed to replicate these outcomes. Nicotinic acid adenine dinucleotide phosphate (NAADP)-evoked Ca(2+) release was also impaired using either a Rab binding-defective TPC2 mutant or a Rab inhibitor. These data suggest a fundamental role for the ancient TPC complex in trafficking that holds relevance for lysosomal proliferative scenarios observed in disease.


Assuntos
Canais de Cálcio/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Pigmentação , Animais , Sinalização do Cálcio , Proliferação de Células , Cromatografia de Afinidade , Células HEK293 , Humanos , NADP/análogos & derivados , NADP/metabolismo , Ligação Proteica , Isoformas de Proteínas/metabolismo , Reprodutibilidade dos Testes , Xenopus , Proteínas rab de Ligação ao GTP/metabolismo
11.
Adv Exp Med Biol ; 898: 423-47, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27161239

RESUMO

Endo-lysosomes are acidic organelles that besides the role in macromolecules degradation, act as intracellular Ca(2+) stores. Nicotinic acid adenine dinucleotide phosphate (NAADP), the most potent Ca(2+)-mobilizing second messenger, produced in response to agonist stimulation, activates Ca(2+)-releasing channels on endo-lysosomes and modulates a variety of cellular functions. NAADP-evoked signals are amplified by Ca(2+) release from endoplasmic reticulum, via the recruitment of inositol 1,4,5-trisphosphate and/or ryanodine receptors through a Ca(2+)-induced Ca(2+)- release (CICR) mechanism. The endo-lysosomal Ca(2+) channels activated by NAADP were recently identified as the two-pore channels (TPCs). In addition to TPCs, endo-lysosomes express another distinct family of Ca(2+)- permeable channels, namely the transient receptor potential mucolipin (TRPML) channels, functionally distinct from TPCs. TPCs belong to the voltage-gated channels, resembling voltage-gated Na(+) and Ca(2+) channels. TPCs have important roles in vesicular fusion and trafficking, in triggering a global Ca(2+) signal and in modulation of the membrane excitability. Depletion of acidic Ca(2+) stores has been shown to activate store-operated Ca(2+) entry in human platelets and mouse pancreatic ß-cells. In human platelets, Ca(2+) influx in response to acidic stores depletion is facilitated by the tubulin-cytoskeleton and occurs through non-selective cation channels and transient receptor potential canonical (TRPC) channels. Emerging evidence indicates that activation of intracellular receptors, situated on endo-lysosomes, elicits canonical and non-canonical signaling mechanisms that involve CICR and activation of non-selective cation channels in plasma membrane. The ability of endo-lysosomal Ca(2+) stores to modulate the Ca(2+) release from other organelles and the Ca(2+) entry increases the diversity and complexity of cellular signaling mechanisms.


Assuntos
Cálcio/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Animais , Humanos , NADP/análogos & derivados , NADP/metabolismo , Canais de Cátion TRPC/metabolismo
12.
Mol Pharmacol ; 88(2): 265-72, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25972448

RESUMO

Emerging evidence indicates the involvement of GPR55 and its proposed endogenous ligand, lysophosphatidylinositol (LPI), in nociception, yet their role in central pain processing has not been explored. Using Ca(2+) imaging, we show here that LPI elicits concentration-dependent and GPR55-mediated increases in intracellular Ca(2+) levels in dissociated rat periaqueductal gray (PAG) neurons, which express GPR55 mRNA. This effect is mediated by Ca(2+) release from the endoplasmic reticulum via inositol 1,4,5-trisphosphate receptors and by Ca(2+) entry via P/Q-type of voltage-gated Ca(2+) channels. Moreover, LPI depolarizes PAG neurons and upon intra-PAG microinjection, reduces nociceptive threshold in the hot-plate test. Both these effects are dependent on GPR55 activation, because they are abolished by pretreatment with ML-193 [N-(4-(N-(3,4-dimethylisoxazol-5-yl)sulfamoyl)-phenyl)-6,8-dimethyl-2-(pyridin-2-yl)quinoline-4-carboxamide], a selective GPR55 antagonist. Thus, we provide the first pharmacological evidence that GPR55 activation at central levels is pronociceptive, suggesting that interfering with GPR55 signaling in the PAG may promote analgesia.


Assuntos
Cálcio/metabolismo , Lisofosfolipídeos/farmacologia , Percepção da Dor , Substância Cinzenta Periaquedutal/fisiologia , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley
13.
J Biol Chem ; 289(6): 3625-38, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24347166

RESUMO

GPR35 is a G protein-coupled receptor expressed in the immune, gastrointestinal, and nervous systems in gastric carcinomas and is implicated in heart failure and pain perception. We investigated residues in GPR35 responsible for ligand activation and the receptor structure in the active state. GPR35 contains numerous positively charged amino acids that face into the binding pocket that cluster in two distinct receptor regions, TMH3-4-5-6 and TMH1-2-7. Computer modeling implicated TMH3-4-5-6 for activation by the GPR35 agonists zaprinast and pamoic acid. Mutation results for the TMH1-2-7 region of GPR35 showed no change in ligand efficacies at the K1.32A, R2.65A, R7.33A, and K7.40A mutants. However, mutation of arginine residues in the TMH3-4-5-6 region (R4.60, R6.58, R3.36, R(164), and R(167) in the EC2 loop) had effects on signaling for one or both agonists tested. R4.60A resulted in a total ablation of agonist-induced activation in both the ß-arrestin trafficking and ERK1/2 activation assays. R6.58A increased the potency of zaprinast 30-fold in the pERK assay. The R(167)A mutant decreased the potency of pamoic acid in the ß-arrestin trafficking assay. The R(164)A and R(164)L mutants decreased potencies of both agonists. Similar trends for R6.58A and R(167)A were observed in calcium responses. Computer modeling showed that the R6.58A mutant has additional interactions with zaprinast. R3.36A did not express on the cell surface but was trapped in the cytoplasm. The lack of surface expression of R3.36A was rescued by a GPR35 antagonist, CID2745687. These results clearly show that R4.60, R(164), R(167), and R6.58 play crucial roles in the agonist initiated activation of GPR35.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Simulação de Dinâmica Molecular , Inibidores de Fosfodiesterase/farmacologia , Purinonas/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Linhagem Celular , Humanos , Ligantes , Sistema de Sinalização das MAP Quinases/genética , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/química , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação de Sentido Incorreto , Inibidores de Fosfodiesterase/química , Estrutura Secundária de Proteína , Purinonas/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética
14.
J Neurochem ; 133(5): 629-39, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25703621

RESUMO

G protein-coupled estrogen receptor (GPER) is a relatively recently identified non-nuclear estrogen receptor, expressed in several tissues, including brain and blood vessels. The mechanisms elicited by GPER activation in brain microvascular endothelial cells are incompletely understood. The purpose of this work was to assess the effects of GPER activation on cytosolic Ca(2+) concentration, [Ca(2+)](i), nitric oxide production, membrane potential and cell nanomechanics in rat brain microvascular endothelial cells (RBMVEC). Extracellular but not intracellular administration of G-1, a selective GPER agonist, or extracellular administration of 17-ß-estradiol and tamoxifen, increased [Ca(2+)](i) in RBMVEC. The effect of G-1 on [Ca(2+)](i) was abolished in Ca(2+) -free saline or in the presence of a L-type Ca(2+) channel blocker. G-1 increased nitric oxide production in RBMVEC; the effect was prevented by NG-nitro-l-arginine methyl ester. G-1 elicited membrane hyperpolarization that was abolished by the antagonists of small and intermediate-conductance Ca(2+) -activated K(+) channels, apamin, and charibdotoxin. GPER-mediated responses were sensitive to G-36, a GPER antagonist. In addition, atomic force microscopy studies revealed that G-1 increased the modulus of elasticity, indicative of cytoskeletal changes and increase in RBMVEC stiffness. Our results unravel the mechanisms underlying GPER-mediated effects in RBMVEC with implications for the effect of estrogen on cerebral microvasculature. Activation of the G protein-coupled estrogen receptor (GPER) in rat brain microvascular endothelial cells (RBMVEC) increases [Ca(2+)](i) by promoting Ca(2+) influx. The increase in [Ca(2+)](i) leads to membrane hyperpolarization, nitric oxide (NO) production, and to cytoskeletal changes and increased cell stiffness. Our results unravel the mechanisms underlying GPER-mediated effects in RBMVEC with implications for the effect of estrogen on cerebral microvasculature.


Assuntos
Cálcio/fisiologia , Capilares/metabolismo , Citosol/fisiologia , Células Endoteliais/metabolismo , Receptores de Estrogênio/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Fenômenos Biomecânicos , Barreira Hematoencefálica/citologia , Barreira Hematoencefálica/fisiologia , Capilares/citologia , Células Cultivadas , Circulação Cerebrovascular , Potenciais da Membrana/fisiologia , Microscopia de Força Atômica , Óxido Nítrico/metabolismo , Ratos , Receptores Acoplados a Proteínas G/agonistas
15.
Am J Physiol Cell Physiol ; 306(8): C736-44, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24401846

RESUMO

The existence of a local renin-angiotensin system (RAS) in neurons was first postulated 40 years ago. Further studies indicated intraneuronal generation of ANG II. However, the function and signaling mechanisms of intraneuronal ANG II remained elusive. Since ANG II type 1 receptor (AT1R) is the major type of receptor mediating the effects of ANG II, we used intracellular microinjection and concurrent Ca(2+) and voltage imaging to examine the functionality of intracellular AT1R in neurons. We show that intracellular administration of ANG II produces a dose-dependent elevation of cytosolic Ca(2+) concentration ([Ca(2+)]i) in hypothalamic neurons that is sensitive to AT1R antagonism. Endolysosomal, but not Golgi apparatus, disruption prevents the effect of microinjected ANG II on [Ca(2+)]i. Additionally, the ANG II-induced Ca(2+) response is dependent on microautophagy and sensitive to inhibition of PLC or antagonism of inositol 1,4,5-trisphosphate receptors. Furthermore, intracellular application of ANG II produces AT1R-mediated depolarization of hypothalamic neurons, which is dependent on [Ca(2+)]i increase and on cation influx via transient receptor potential canonical channels. In summary, we provide evidence that intracellular ANG II activates endolysosomal AT1Rs in hypothalamic neurons. Our results point to the functionality of a novel intraneuronal angiotensinergic pathway, extending the current understanding of intracrine ANG II signaling.


Assuntos
Angiotensina II/metabolismo , Neurônios/fisiologia , Transdução de Sinais/fisiologia , Angiotensina II/administração & dosagem , Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica , Humanos , Hipotálamo/citologia , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Microinjeções , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Receptor Tipo 1 de Angiotensina/metabolismo
16.
Biochemistry ; 53(30): 4990-9, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25033246

RESUMO

The therapeutic and psychoactive properties of cannabinoids have long been recognized. The type 2 receptor for cannabinoids (CB2) has emerged as an important therapeutic target in several pathologies, as it mediates beneficial effects of cannabinoids while having little if any psychotropic activity. Difficulties associated with the development of CB2-based therapeutic agents have been related to its intricate pharmacology, including the species specificity and functional selectivity of the CB2-initiated responses. We postulated that a plasmalemmal or subcellular location of the receptor may contribute to the differential signaling pathways initiated by its activation. To differentiate between these two, we used extracellular and intracellular administration of CB2 ligands and concurrent calcium imaging in CB2-expressing U2OS cells. We found that extracellular administration of anandamide was ineffective, whereas 2-arachidonoyl glycerol (2-AG) and WIN55,212-2 triggered delayed, CB2-dependent Ca(2+) responses that were Gq protein-mediated. When microinjected, all agonists elicited fast, transient, and dose-dependent elevations in intracellular Ca(2+) concentration upon activation of Gq-coupled CB2 receptors. The CB2 dependency was confirmed by the sensitivity to AM630, a selective CB2 antagonist, and by the unresponsiveness of untransfected U2OS cells to 2-AG, anandamide, or WIN55,212-2. Moreover, we provide functional and morphological evidence that CB2 receptors are localized at the endolysosomes, while their activation releases Ca(2+) from inositol 1,4,5-trisphosphate-sensitive- and acidic-like Ca(2+) stores. Our results support the functionality of intracellular CB2 receptors and their ability to couple to Gq and elicit Ca(2+) signaling. These findings add further complexity to CB2 receptor pharmacology and argue for careful consideration of receptor localization in the development of CB2-based therapeutic agents.


Assuntos
Sinalização do Cálcio/fisiologia , Membranas Intracelulares/química , Receptor CB2 de Canabinoide/química , Benzoxazinas/metabolismo , Benzoxazinas/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Humanos , Membranas Intracelulares/metabolismo , Dados de Sequência Molecular , Morfolinas/metabolismo , Morfolinas/farmacologia , Naftalenos/metabolismo , Naftalenos/farmacologia , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo
17.
J Biol Chem ; 288(16): 10986-93, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23467410

RESUMO

Nicotinic acid adenine dinucleotide phosphate (NAADP) is increasingly being demonstrated to be involved in calcium signaling in many cell types and species. Although it has been shown to play a role in smooth muscle cell contraction in several tissues, nothing is known about its possible role in tracheal smooth muscle, a muscle type that is clinically relevant to asthma. To determine whether NAADP functions as a second messenger in tracheal smooth muscle contraction, we used the criteria set out by Sutherland for a molecule to be designated a second messenger. We report that NAADP satisfies all five criteria as follows. First, the NAADP antagonist Ned-19 inhibited contractions in tracheal rings and calcium increases in isolated smooth muscle cells induced by the muscarinic agonist carbachol. Second, NAADP increased cytosolic calcium in isolated cells when microinjected and was blocked by Ned-19. Third, tracheal homogenates could synthesize NAADP by base exchange from exogenous NADP and nicotinic acid and metabolize exogenous NAADP to nicotinic acid adenine dinucleotide by a 2'-phosphatase. Fourth, carbachol induced a rapid and transient increase in endogenous NAADP levels. Fifth, tracheal homogenates contained NAADP-binding sites of high affinity. Taken together, these data demonstrate that NAADP functions as a second messenger in tracheal smooth muscle, and therefore, steps in the NAADP signaling pathway might provide possible new drug targets.


Assuntos
Contração Muscular/fisiologia , Músculo Liso/metabolismo , NADP/análogos & derivados , Sistemas do Segundo Mensageiro/fisiologia , Traqueia/metabolismo , Animais , Cálcio/metabolismo , Carbolinas/farmacologia , Cobaias , Contração Muscular/efeitos dos fármacos , NADP/antagonistas & inibidores , NADP/metabolismo , Piperazinas/farmacologia , Sistemas do Segundo Mensageiro/efeitos dos fármacos
18.
J Biol Chem ; 288(31): 22481-92, 2013 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-23814062

RESUMO

The L-α-lysophosphatidylinositol (LPI)-sensitive receptor GPR55 is coupled to Ca(2+) signaling. Low levels of GPR55 expression in the heart have been reported. Similar to other G protein-coupled receptors involved in cardiac function, GPR55 may be expressed both at the sarcolemma and intracellularly. Thus, to explore the role of GPR55 in cardiomyocytes, we used calcium and voltage imaging and extracellular administration or intracellular microinjection of GPR55 ligands. We provide the first evidence that, in cultured neonatal ventricular myocytes, LPI triggers distinct signaling pathways via GPR55, depending on receptor localization. GPR55 activation at the sarcolemma elicits, on one hand, Ca(2+) entry via L-type Ca(2+) channels and, on the other, inositol 1,4,5-trisphosphate-dependent Ca(2+) release. The latter signal is further amplified by Ca(2+)-induced Ca(2+) release via ryanodine receptors. Conversely, activation of GPR55 at the membrane of intracellular organelles promotes Ca(2+) release from acidic-like Ca(2+) stores via the endolysosomal NAADP-sensitive two-pore channels. This response is similarly enhanced by Ca(2+)-induced Ca(2+) release via ryanodine receptors. Extracellularly applied LPI produces Ca(2+)-independent membrane depolarization, whereas the Ca(2+) signal induced by intracellular microinjection of LPI converges to hyperpolarization of the sarcolemma. Collectively, our findings point to GPR55 as a novel G protein-coupled receptor regulating cardiac function at two cellular sites. This work may serve as a platform for future studies exploring the potential of GPR55 as a therapeutic target in cardiac disorders.


Assuntos
Miócitos Cardíacos/metabolismo , Receptores de Canabinoides/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Organelas/metabolismo , Ratos , Ratos Sprague-Dawley
19.
J Neurochem ; 129(4): 628-36, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24521102

RESUMO

Urotensin II (U-II) is a cyclic undecapeptide that regulates cardiovascular function at central and peripheral sites. The functional role of U-II nucleus ambiguus, a key site controlling cardiac tone, has not been established, despite the identification of U-II and its receptor at this level. We report here that U-II produces an increase in cytosolic Ca(2+) concentration in retrogradely labeled cardiac vagal neurons of nucleus ambiguus via two pathways: (i) Ca(2+) release from the endoplasmic reticulum via inositol 1,4,5-trisphosphate receptor; and (ii) Ca(2+) influx through P/Q-type Ca(2+) channels. In addition, U-II depolarizes cultured cardiac parasympathetic neurons. Microinjection of increasing concentrations of U-II into nucleus ambiguus elicits dose-dependent bradycardia in conscious rats, indicating the in vivo activation of the cholinergic pathway controlling the heart rate. Both the in vitro and in vivo effects were abolished by the urotensin receptor antagonist, urantide. Our findings suggest that, in addition, to the previously reported increase in sympathetic outflow, U-II activates cardiac vagal neurons of nucleus ambiguus, which may contribute to cardioprotection.


Assuntos
Bradicardia/fisiopatologia , Tronco Encefálico/fisiopatologia , Sinalização do Cálcio/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiopatologia , Neurônios/metabolismo , Sistema Nervoso Parassimpático/fisiopatologia , Urotensinas/fisiologia , Nervo Vago/fisiopatologia , Animais , Animais Recém-Nascidos , Fibras Autônomas Pré-Ganglionares/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Bradicardia/induzido quimicamente , Tronco Encefálico/efeitos dos fármacos , Canais de Cálcio Tipo P/efeitos dos fármacos , Canais de Cálcio Tipo P/fisiologia , Canais de Cálcio Tipo Q/efeitos dos fármacos , Canais de Cálcio Tipo Q/fisiologia , Sinalização do Cálcio/fisiologia , Feminino , Sistema de Condução Cardíaco/efeitos dos fármacos , Receptores de Inositol 1,4,5-Trifosfato/efeitos dos fármacos , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Microinjeções , Modelos Cardiovasculares , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores Acoplados a Proteínas G/fisiologia , Taquicardia/induzido quimicamente , Taquifilaxia , Urotensinas/farmacologia , Urotensinas/toxicidade
20.
Am J Physiol Regul Integr Comp Physiol ; 306(11): R814-22, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24694382

RESUMO

The mechanisms of autonomic imbalance and subsequent cardiovascular manifestations in HIV-1-infected patients are poorly understood. We report here that HIV-1 transactivator of transcription (Tat, fragment 1-86) produced a concentration-dependent increase in cytosolic Ca(2+) in cardiac-projecting parasympathetic neurons of nucleus ambiguus retrogradely labeled with rhodamine. Using store-specific pharmacological agents, we identified several mechanisms of the Tat-induced Ca(2+) elevation: 1) lysosomal Ca(2+) mobilization, 2) Ca(2+) release via inositol 1,4,5-trisphosphate-sensitive endoplasmic reticulum pools, and 3) Ca(2+) influx via transient receptor potential vanilloid type 2 (TRPV2) channels. Activation of TRPV2, nonselective cation channels, induced a robust and prolonged neuronal membrane depolarization, thus triggering an additional P/Q-mediated Ca(2+) entry. In vivo microinjection studies indicate a dose-dependent, prolonged bradycardic effect of Tat administration into the nucleus ambiguus of conscious rats, in which neuronal TRPV2 played a major role. Our results support previous studies, indicating that Tat promotes bradycardia and, consequently, may be involved in the QT interval prolongation reported in HIV-infected patients. In the context of an overall HIV-dependent autonomic dysfunction, these Tat-mediated mechanisms may account for the higher prevalence of sudden cardiac death in HIV-1-infected patients compared with general population with similar risk factors. Our results may be particularly relevant in view of the recent findings that significant Tat levels can still be identified in the cerebrospinal fluid of HIV-infected patients with viral load suppression due to efficient antiretroviral therapy.


Assuntos
Bradicardia/fisiopatologia , Estado de Consciência/fisiologia , Bulbo/efeitos dos fármacos , Sistema Nervoso Parassimpático/efeitos dos fármacos , Fragmentos de Peptídeos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia , Animais , Bradicardia/induzido quimicamente , Cálcio/metabolismo , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Feminino , Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Bulbo/metabolismo , Bulbo/fisiopatologia , Microinjeções , Sistema Nervoso Parassimpático/metabolismo , Sistema Nervoso Parassimpático/fisiopatologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/efeitos adversos , Fragmentos de Peptídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPV/fisiologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/administração & dosagem , Produtos do Gene tat do Vírus da Imunodeficiência Humana/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA