Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Cell ; 184(5): 1299-1313.e19, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33606976

RESUMO

It is unclear how binding of antidepressant drugs to their targets gives rise to the clinical antidepressant effect. We discovered that the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol. We then found that both typical and fast-acting antidepressants directly bind to TRKB, thereby facilitating synaptic localization of TRKB and its activation by BDNF. Extensive computational approaches including atomistic molecular dynamics simulations revealed a binding site at the transmembrane region of TRKB dimers. Mutation of the TRKB antidepressant-binding motif impaired cellular, behavioral, and plasticity-promoting responses to antidepressants in vitro and in vivo. We suggest that binding to TRKB and allosteric facilitation of BDNF signaling is the common mechanism for antidepressant action, which may explain why typical antidepressants act slowly and how molecular effects of antidepressants are translated into clinical mood recovery.


Assuntos
Antidepressivos/farmacologia , Receptor trkB/metabolismo , Animais , Antidepressivos/química , Antidepressivos/metabolismo , Sítios de Ligação , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular , Colesterol/metabolismo , Embrião de Mamíferos , Fluoxetina/química , Fluoxetina/metabolismo , Fluoxetina/farmacologia , Hipocampo/metabolismo , Humanos , Camundongos , Modelos Animais , Simulação de Dinâmica Molecular , Domínios Proteicos , Ratos , Receptor trkB/química , Córtex Visual/metabolismo
2.
Neurochem Res ; 47(9): 2656-2666, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35307777

RESUMO

Activity-regulated cytoskeleton-associated (Arc) protein plays key roles in long-term synaptic plasticity, memory, and cognitive flexibility. However, an integral understanding of Arc mechanisms is lacking. Arc is proposed to function as an interaction hub in neuronal dendrites and the nucleus, yet Arc can also form retrovirus-like capsids with proposed roles in intercellular communication. Here, we sought to develop anti-Arc nanobodies (ArcNbs) as new tools for probing Arc dynamics and function. Six ArcNbs representing different clonal lines were selected from immunized alpaca. Immunoblotting with recombinant ArcNbs fused to a small ALFA-epitope tag demonstrated binding to recombinant Arc as well as endogenous Arc from rat cortical tissue. ALFA-tagged ArcNb also provided efficient immunoprecipitation of stimulus-induced Arc after carbachol-treatment of SH-SY5Y neuroblastoma cells and induction of long-term potentiation in the rat dentate gyrus in vivo. Epitope mapping showed that all Nbs recognize the Arc C-terminal region containing the retroviral Gag capsid homology domain, comprised of tandem N- and C-lobes. ArcNbs E5 and H11 selectively bound the N-lobe, which harbors a peptide ligand binding pocket specific to mammals. Four additional ArcNbs bound the region containing the C-lobe and C-terminal tail. For use as genetically encoded fluorescent intrabodies, we show that ArcNbs fused to mScarlet-I are uniformly expressed, without aggregation, in the cytoplasm and nucleus of HEK293FT cells. Finally, mScarlet-I-ArcNb H11 expressed as intrabody selectively bound the N-lobe and enabled co-immunoprecipitation of full-length intracellular Arc. ArcNbs are versatile tools for live-cell labeling and purification of Arc, and interrogation of Arc capsid domain specific functions.


Assuntos
Neuroblastoma , Anticorpos de Domínio Único , Animais , Proteínas do Citoesqueleto/metabolismo , Humanos , Potenciação de Longa Duração/fisiologia , Mamíferos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Ratos
3.
J Neurosci ; 40(7): 1405-1426, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31915257

RESUMO

BDNF signaling via its transmembrane receptor TrkB has an important role in neuronal survival, differentiation, and synaptic plasticity. Remarkably, BDNF is capable of modulating its own expression levels in neurons, forming a transcriptional positive feedback loop. In the current study, we have investigated this phenomenon in primary cultures of rat cortical neurons using overexpression of dominant-negative forms of several transcription factors, including CREB, ATF2, C/EBP, USF, and NFAT. We show that CREB family transcription factors, together with the coactivator CBP/p300, but not the CRTC family, are the main regulators of rat BDNF gene expression after TrkB signaling. CREB family transcription factors are required for the early induction of all the major BDNF transcripts, whereas CREB itself directly binds only to BDNF promoter IV, is phosphorylated in response to BDNF-TrkB signaling, and activates transcription from BDNF promoter IV by recruiting CBP. Our complementary reporter assays with BDNF promoter constructs indicate that the regulation of BDNF by CREB family after BDNF-TrkB signaling is generally conserved between rat and human. However, we demonstrate that a nonconserved functional cAMP-responsive element in BDNF promoter IXa in humans renders the human promoter responsive to BDNF-TrkB-CREB signaling, whereas the rat ortholog is unresponsive. Finally, we show that extensive BDNF transcriptional autoregulation, encompassing all major BDNF transcripts, occurs also in vivo in the adult rat hippocampus during BDNF-induced LTP. Collectively, these results improve the understanding of the intricate mechanism of BDNF transcriptional autoregulation.SIGNIFICANCE STATEMENT Deeper understanding of stimulus-specific regulation of BDNF gene expression is essential to precisely adjust BDNF levels that are dysregulated in various neurological disorders. Here, we have elucidated the molecular mechanisms behind TrkB signaling-dependent BDNF mRNA induction and show that CREB family transcription factors are the main regulators of BDNF gene expression after TrkB signaling. Our results suggest that BDNF-TrkB signaling may induce BDNF gene expression in a distinct manner compared with neuronal activity. Moreover, our data suggest the existence of a stimulus-specific distal enhancer modulating BDNF gene expression.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/fisiologia , Fator Neurotrófico Derivado do Encéfalo/genética , Córtex Cerebral/citologia , Regulação da Expressão Gênica/genética , Hipocampo/citologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Transcrição Gênica/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Células Cultivadas , Córtex Cerebral/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Proteínas do Citoesqueleto/biossíntese , Proteínas do Citoesqueleto/genética , Retroalimentação Fisiológica , Feminino , Genes Dominantes , Genes Reporter , Genes Sintéticos , Hipocampo/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Regiões Promotoras Genéticas , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor trkB/fisiologia , Proteínas Recombinantes/farmacologia , Elementos de Resposta , Especificidade da Espécie , Transdução Genética
4.
Eur J Neurosci ; 54(8): 6696-6712, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-32888346

RESUMO

Arc (activity-regulated cytoskeleton-associated protein) is posited as a critical regulator of long-term synaptic plasticity at excitatory synapses, including long-term potentiation, long-term depression, inverse synaptic tagging and homoeostatic scaling, with pivotal roles in memory and postnatal cortical development. However, the mechanisms underlying the bidirectional regulation of synaptic strength are poorly understood. Here we review evidence from different plasticity paradigms, highlight outstanding issues and discuss stimulus-specific mechanisms that dictate Arc function. We propose a model in which Arc bidirectionally controls synaptic strength by coordinate regulation of AMPA-type glutamate receptor (AMPAR) trafficking and actin cytoskeletal dynamics in dendritic spines. Key to this model, Arc is proposed to function as an activity-dependent regulator of AMPAR lateral membrane diffusion and trapping at synapses.


Assuntos
Proteínas do Citoesqueleto , Proteínas do Tecido Nervoso , Potenciação de Longa Duração , Plasticidade Neuronal , Sinapses
5.
Trends Biochem Sci ; 41(10): 847-858, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27527252

RESUMO

The eukaryotic translation initiation factor (eIF) 4E, which binds to the 5'-cap of mRNA, undergoes phosphorylation on a single conserved serine, executed by the mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs). However, the functional consequences and physiological roles of MNK signalling have remained obscure. Now, new pharmacological and genetic tools have provided unprecedented insights into the function of MNKs and eIF4E phosphorylation. The studies suggest that MNKs control the translation of specific mRNAs in cancer metastasis and neuronal synaptic plasticity by a novel mechanism involving the regulation of the translational repressor, cytoplasmic fragile-X protein-interacting protein 1 (CYFIP1). These recent breakthroughs go a long way to resolving the longstanding enigma and controversy surrounding the function of the MNK-eIF4E axis in cancer cell biology and neurobiology.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Fator de Iniciação 4E em Eucariotos/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Biossíntese de Proteínas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Plasticidade Neuronal , Fosforilação , Ligação Proteica , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Transdução de Sinais , Sinapses/genética , Sinapses/metabolismo
6.
Semin Cell Dev Biol ; 77: 33-42, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28890419

RESUMO

Mammalian excitatory synapses express diverse types of synaptic plasticity. A major challenge in neuroscience is to understand how a neuron utilizes different types of plasticity to sculpt brain development, function, and behavior. Neuronal activity-induced expression of the immediate early protein, Arc, is critical for long-term potentiation and depression of synaptic transmission, homeostatic synaptic scaling, and adaptive functions such as long-term memory formation. However, the molecular basis of Arc protein function as a regulator of synaptic plasticity and cognition remains a puzzle. Recent work on the biophysical and structural properties of Arc, its protein-protein interactions and post-translational modifications have shed light on the issue. Here, we present Arc protein as a flexible, multifunctional and interactive hub. Arc interacts with specific effector proteins in neuronal compartments (dendritic spines, nuclear domains) to bidirectionally regulate synaptic strength by distinct molecular mechanisms. Arc stability, subcellular localization, and interactions are dictated by synaptic activity and post-translational modification of Arc. This functional versatility and context-dependent signaling supports a view of Arc as a highly specialized master organizer of long-term synaptic plasticity, critical for information storage and cognition.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Proteínas do Citoesqueleto/metabolismo , Memória de Longo Prazo/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Transmissão Sináptica/fisiologia , Animais , Encéfalo/crescimento & desenvolvimento , Endocitose/fisiologia , Humanos , Camundongos , Processamento de Proteína Pós-Traducional/genética , Ratos , Receptores de Glutamato/metabolismo , Sinapses/metabolismo
7.
J Neurochem ; 147(3): 323-343, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30028513

RESUMO

The activity-regulated cytoskeleton-associated protein (ARC) is critical for long-term synaptic plasticity and memory formation. Acting as a protein interaction hub, ARC regulates diverse signalling events in postsynaptic neurons. A protein interaction site is present in the ARC C-terminal domain (CTD), a bilobar structure homologous to the retroviral Gag capsid domain. We hypothesized that detailed knowledge of the three-dimensional molecular structure of monomeric full-length ARC is crucial to understand its function; therefore, we set out to determine the structure of ARC to understand its various functional modalities. We purified recombinant ARC and analyzed its structure using small-angle X-ray scattering and synchrotron radiation circular dichroism spectroscopy. Monomeric full-length ARC has a compact, closed structure, in which the oppositely charged N-terminal domain (NTD) and CTD are juxtaposed, and the flexible linker between them is not extended. The modeled structure of ARC is supported by intramolecular live-cell Förster resonance energy transfer imaging in rat hippocampal slices. Peptides from several postsynaptic proteins, including stargazin, bind to the N-lobe, but not to the C-lobe, of the bilobar CTD. This interaction does not induce large-scale conformational changes in the CTD or flanking unfolded regions. The ARC NTD contains long helices, predicted to form an anti-parallel coiled coil; binding of ARC to phospholipid membranes requires the NTD. Our data support a role for the ARC NTD in oligomerization as well as lipid membrane binding. The findings have important implications for the structural organization of ARC with respect to distinct functions, such as postsynaptic signal transduction and virus-like capsid formation. Open Practices Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.


Assuntos
Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/fisiologia , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/fisiologia , Animais , Dicroísmo Circular , Transferência Ressonante de Energia de Fluorescência , Hipocampo/química , Humanos , Masculino , Modelos Moleculares , Estrutura Molecular , Neurônios/química , Neurônios/ultraestrutura , Conformação Proteica , Domínios Proteicos , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes , Espalhamento de Radiação , Raios X
8.
Mol Cell ; 37(6): 797-808, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20347422

RESUMO

The eIF4E-binding proteins (4E-BPs) repress translation initiation by preventing eIF4F complex formation. Of the three mammalian 4E-BPs, only 4E-BP2 is enriched in the mammalian brain and plays an important role in synaptic plasticity and learning and memory formation. Here we describe asparagine deamidation as a brain-specific posttranslational modification of 4E-BP2. Deamidation is the spontaneous conversion of asparagines to aspartates. Two deamidation sites were mapped to an asparagine-rich sequence unique to 4E-BP2. Deamidated 4E-BP2 exhibits increased binding to the mammalian target of rapamycin (mTOR)-binding protein raptor, which effects its reduced association with eIF4E. 4E-BP2 deamidation occurs during postnatal development, concomitant with the attenuation of the activity of the PI3K-Akt-mTOR signaling pathway. Expression of deamidated 4E-BP2 in 4E-BP2(-/-) neurons yielded mEPSCs exhibiting increased charge transfer with slower rise and decay kinetics relative to the wild-type form. 4E-BP2 deamidation may represent a compensatory mechanism for the developmental reduction of PI3K-Akt-mTOR signaling.


Assuntos
Encéfalo/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Processamento de Proteína Pós-Traducional , Transmissão Sináptica , Sequência de Aminoácidos , Animais , Animais Recém-Nascidos , Células Cultivadas , Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/deficiência , Fatores de Iniciação em Eucariotos/genética , Humanos , Cinética , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Especificidade de Órgãos , Fosforilação , Transporte Proteico , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
9.
BMC Genomics ; 18(1): 250, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28335720

RESUMO

BACKGROUND: DNA methylation is a key modulator of gene expression in mammalian development and cellular differentiation, including neurons. To date, the role of DNA modifications in long-term potentiation (LTP) has not been explored. RESULTS: To investigate the occurrence of DNA methylation changes in LTP, we undertook the first detailed study to describe the methylation status of all known LTP-associated genes during LTP induction in the dentate gyrus of live rats. Using a methylated DNA immunoprecipitation (MeDIP)-array, together with previously published matched RNA-seq and public histone modification data, we discover widespread changes in methylation status of LTP-genes. We further show that the expression of many LTP-genes is correlated with their methylation status. We show that these correlated genes are enriched for RNA-processing, active histone marks, and specific transcription factors. These data reveal that the synaptic activity-evoked methylation changes correlates with pre-existing activation of the chromatin landscape. Finally, we show that methylation of Brain-derived neurotrophic factor (Bdnf) CpG-islands correlates with isoform switching from transcripts containing exon IV to exon I. CONCLUSIONS: Together, these data provide the first evidence of widespread regulation of methylation status in LTP-associated genes.


Assuntos
Encéfalo/fisiologia , Metilação de DNA , Potenciação de Longa Duração/genética , Plasticidade Neuronal/genética , Regiões Promotoras Genéticas/genética , Adulto , Encéfalo/metabolismo , Cromatina/metabolismo , Ilhas de CpG/genética , Regulação da Expressão Gênica , Loci Gênicos/genética , Histonas/metabolismo , Humanos , Memória/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos
11.
J Neurosci ; 35(38): 12986-93, 2015 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-26400930

RESUMO

Sporadic Alzheimer's disease (AD) is an incurable neurodegenerative disease with clear pathological hallmarks, brain dysfunction, and unknown etiology. Here, we tested the hypothesis that there is a link between genetic risk factors for AD, cellular metabolic stress, and transcription/translation regulation. In addition, we aimed at reversing the memory impairment observed in a mouse model of sporadic AD. We have previously demonstrated that the most prevalent genetic risk factor for AD, the ApoE4 allele, is correlated with increased phosphorylation of the translation factor eIF2α. In the present study, we tested the possible involvement of additional members of the eIF2α pathway and identified increased mRNA expression of negative transcription factor ATF4 (aka CREB2) both in human and a mouse model expressing the human ApoE4 allele. Furthermore, injection of a PKR inhibitor rescued memory impairment and attenuated ATF4 mRNA increased expression in the ApoE4 mice. The results propose a new mechanism by which ApoE4 affects brain function and further suggest that inhibition of PKR is a way to restore ATF4 overexpression and memory impairment in early stages of sporadic AD. Significance statement: ATF4 mRNA relative quantities are elevated in ApoE4 allele carriers compared with noncarrier controls. This is true also for the ApoE ε4 human replacement mice. ApoE4 mice injected with PKR inhibitor (PKRi) demonstrate a significant reduction in ATF4 expression levels 3 h after one injection of PKRi. Treatment of ApoE4 human replacement mice with the PKRi before learning rescues the memory impairment of the ApoE4 AD model mice. We think that these results propose a new mechanism by which ApoE4 affects brain function and suggest that inhibition of PKR is a way to restore memory impairment in early stages of sporadic AD.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Apolipoproteína E4/genética , Inibidores Enzimáticos/uso terapêutico , Transtornos da Memória/genética , Transtornos da Memória/metabolismo , Proteínas Quinases/metabolismo , Fator 4 Ativador da Transcrição/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Apolipoproteína E3/genética , Condicionamento Psicológico/fisiologia , Medo/psicologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Técnicas In Vitro , Masculino , Transtornos da Memória/tratamento farmacológico , Camundongos , Camundongos Transgênicos , Fosforilação/efeitos dos fármacos , Fosforilação/genética , RNA Mensageiro/metabolismo , Estatísticas não Paramétricas
12.
Biochem J ; 468(1): 145-58, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25748042

RESUMO

The immediate early gene product Arc (activity-regulated cytoskeleton-associated protein) is posited as a master regulator of long-term synaptic plasticity and memory. However, the physicochemical and structural properties of Arc have not been elucidated. In the present study, we expressed and purified recombinant human Arc (hArc) and performed the first biochemical and biophysical analysis of hArc's structure and stability. Limited proteolysis assays and MS analysis indicate that hArc has two major domains on either side of a central more disordered linker region, consistent with in silico structure predictions. hArc's secondary structure was estimated using CD, and stability was analysed by CD-monitored thermal denaturation and differential scanning fluorimetry (DSF). Oligomerization states under different conditions were studied by dynamic light scattering (DLS) and visualized by AFM and EM. Biophysical analyses show that hArc is a modular protein with defined secondary structure and loose tertiary structure. hArc appears to be pyramid-shaped as a monomer and is capable of reversible self-association, forming large soluble oligomers. The N-terminal domain of hArc is highly basic, which may promote interaction with cytoskeletal structures or other polyanionic surfaces, whereas the C-terminal domain is acidic and stabilized by ionic conditions that promote oligomerization. Upon binding of presenilin-1 (PS1) peptide, hArc undergoes a large structural change. A non-synonymous genetic variant of hArc (V231G) showed properties similar to the wild-type (WT) protein. We conclude that hArc is a flexible multi-domain protein that exists in monomeric and oligomeric forms, compatible with a diverse, hub-like role in plasticity-related processes.


Assuntos
Proteínas do Citoesqueleto/química , Proteínas do Tecido Nervoso/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Fenômenos Biofísicos , Linhagem Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/fisiologia , Variação Genética , Humanos , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Plasticidade Neuronal/fisiologia , Presenilina-1/metabolismo , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homologia de Sequência de Aminoácidos
13.
Acta Neuropathol ; 128(6): 835-52, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25341622

RESUMO

Paraneoplastic cerebellar degeneration (PCD) is characterized by loss of Purkinje cells (PCs) associated with progressive pancerebellar dysfunction in the presence of onconeural Yo antibodies. These antibodies recognize the cerebellar degeneration-related antigens CDR2 and CDR2L. Response to PCD therapy is disappointing due to limited understanding of the neuropathological mechanisms. Here, we report the pathological role of CDR antibodies on the calcium homeostasis in PCs. We developed an antibody-mediated PCD model based on co-incubation of cerebellar organotypic slice culture with human patient serum or rabbit CDR2 and CDR2L antibodies. The CDR antibody-induced pathology was investigated by high-resolution multiphoton imaging and biochemical analysis. Both human and rabbit CDR antibodies were rapidly internalized by PCs and led to reduced immunoreactivity of calbindin D28K (CB) and L7/Pcp-2 as well as reduced dendritic arborizations in the remaining PCs. Washout of the CDR antibodies partially recovered CB immunoreactivity, suggesting a transient structural change in CB calcium-binding site. We discovered that CDR2 and CB co-immunoprecipitate. Furthermore, the expression levels of voltage-gated calcium channel Cav2.1, protein kinase C gamma and calcium-dependent protease, calpain-2, were increased after CDR antibody internalization. Inhibition of these signaling pathways prevented or attenuated CDR antibody-induced CB and L7/Pcp-2 immunoreactivity loss, morphological changes and increased protein expression. These results signify that CDR antibody internalization causes dysregulation of cell calcium homeostasis. Hence, drugs that modulate these events may represent novel neuroprotective therapies that limit the damaging effects of CDR antibodies and prevent PC neurodegeneration.


Assuntos
Autoanticorpos/imunologia , Autoantígenos/imunologia , Cálcio/metabolismo , Proteínas do Tecido Nervoso/imunologia , Degeneração Paraneoplásica Cerebelar/imunologia , Células de Purkinje/imunologia , Idoso , Idoso de 80 Anos ou mais , Animais , Autoanticorpos/metabolismo , Autoantígenos/metabolismo , Calbindina 1/metabolismo , Canais de Cálcio Tipo N/metabolismo , Calpaína/metabolismo , Feminino , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Degeneração Paraneoplásica Cerebelar/patologia , Proteína Quinase C/metabolismo , Células de Purkinje/patologia , Coelhos , Ratos Wistar , Técnicas de Cultura de Tecidos
14.
PLoS One ; 19(4): e0300453, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38683783

RESUMO

The activity-regulated cytoskeleton-associated protein (Arc) is a complex regulator of synaptic plasticity in glutamatergic neurons. Understanding its molecular function is key to elucidate the neurobiology of memory and learning, stress regulation, and multiple neurological and psychiatric diseases. The recent development of anti-Arc nanobodies has promoted the characterization of the molecular structure and function of Arc. This study aimed to validate two anti-Arc nanobodies, E5 and H11, as selective modulators of the human Arc N-lobe (Arc-NL), a domain that mediates several molecular functions of Arc through its peptide ligand binding site. The structural characteristics of recombinant Arc-NL-nanobody complexes were solved at atomic resolution using X-ray crystallography. Both anti-Arc nanobodies bind specifically to the multi-peptide binding site of Arc-NL. Isothermal titration calorimetry showed that the Arc-NL-nanobody interactions occur at nanomolar affinity, and that the nanobodies can displace a TARPγ2-derived peptide from the binding site. Thus, both anti-Arc-NL nanobodies could be used as competitive inhibitors of endogenous Arc ligands. Differences in the CDR3 loops between the two nanobodies indicate that the spectrum of short linear motifs recognized by the Arc-NL should be expanded. We provide a robust biochemical background to support the use of anti-Arc nanobodies in attempts to target Arc-dependent synaptic plasticity. Function-blocking anti-Arc nanobodies could eventually help unravel the complex neurobiology of synaptic plasticity and allow to develop diagnostic and treatment tools.


Assuntos
Proteínas do Citoesqueleto , Proteínas do Tecido Nervoso , Anticorpos de Domínio Único , Humanos , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/metabolismo , Sítios de Ligação , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/imunologia , Ligantes , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/imunologia , Cristalografia por Raios X , Ligação Proteica , Modelos Moleculares , Sequência de Aminoácidos
15.
J Neurosci ; 32(42): 14538-47, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23077039

RESUMO

Local, synaptic synthesis of new proteins in response to neuronal stimulation plays a key role in the regulation of synaptic morphogenesis. Recent studies indicate that matrix metalloproteinase-9 (MMP-9), an endopeptidase that regulates the pericellular environment through cleavage of its protein components, plays a critical role in regulation of spine morphology and synaptic plasticity. Here, we sought to determine whether MMP-9 mRNA is transported to dendrites for local translation and protein release. First, dendritic transport of MMP-9 mRNA was seen in primary hippocampal neuronal cultures treated with glutamate and in dentate gyrus granule cells in adult anesthetized rats after induction of long-term potentiation. Second, rapid, activity-dependent polyadenylation of MMP-9 mRNA; association of the mRNA with actively translating polysomes; and de novo MMP-9 protein synthesis were obtained in synaptoneurosomes isolated from rat hippocampus. Third, glutamate stimulation of cultured hippocampal neurons evoked a rapid (in minutes) increase in MMP-9 activity, as measured by cleavage of its native substrate, ß-dystroglycan. This activity was reduced by the polyadenylation inhibitor, thus linking MMP-9 translation with protein function. In aggregate, our findings show that MMP-9 mRNA is transported to dendrites and locally translated and that the protein is released in an activity-dependent manner. Acting in concert with other dendritically synthesized proteins, locally secreted MMP-9 may contribute to the structural and functional plasticity of the activated synapses.


Assuntos
Hipocampo/enzimologia , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Biossíntese de Proteínas/fisiologia , Animais , Dendritos/enzimologia , Ativação Enzimática/genética , Hipocampo/fisiologia , Masculino , Via Perfurante/citologia , Via Perfurante/enzimologia , Cultura Primária de Células , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Sinaptossomos/enzimologia
16.
J Biol Chem ; 287(26): 22354-66, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22584581

RESUMO

Cholinergic signaling induces Arc/Arg3.1, an immediate early gene crucial for synaptic plasticity. However, the molecular mechanisms that dictate Arc mRNA and protein dynamics during and after cholinergic epochs are little understood. Using human SH-SY5Y neuroblastoma cells, we show that muscarinic cholinergic receptor (mAchR) stimulation triggers Arc synthesis, whereas translation-dependent RNA decay and proteasomal degradation strictly limit the amount and duration of Arc expression. Chronic application of the mAchR agonist, carbachol (Cch), induces Arc transcription via ERK signaling and release of calcium from IP(3)-sensitive stores. Arc translation requires ERK activation, but not changes in intracellular calcium. Proteasomal degradation of Arc (half-life ∼37 min) was enhanced by thapsigargin, an inhibitor of the endoplasmic calcium-ATPase pump. Similar mechanisms of Arc protein regulation were observed in cultured rat hippocampal slices. Functionally, we studied the impact of cholinergic epoch duration and temporal pattern on Arc protein expression. Acute Cch treatment (as short as 2 min) induces transient, moderate Arc expression, whereas continuous treatment of more than 30 min induces maximal expression, followed by rapid decline. Cholinergic activity associated with rapid eye movement sleep may function to facilitate long term synaptic plasticity and memory. Employing a paradigm designed to mimic intermittent rapid eye movement sleep epochs, we show that application of Cch in a series of short bursts generates persistent and maximal Arc protein expression. The results demonstrate dynamic, multifaceted control of Arc synthesis during mAchR signaling, and implicate cholinergic epoch duration and repetition as critical determinants of Arc expression and function in synaptic plasticity and behavior.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Proteínas do Tecido Nervoso/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Mensageiro/metabolismo , Sinapses/metabolismo , Animais , Carbacol/metabolismo , Carbacol/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Hipocampo/metabolismo , Humanos , Memória , Modelos Biológicos , Plasticidade Neuronal , Ratos , Ratos Wistar , Receptores Colinérgicos/metabolismo , Transdução de Sinais , Sono , Sono REM , Fatores de Tempo
17.
Lipids Health Dis ; 12: 6, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23351783

RESUMO

BACKGROUND: The purpose of the study was to evaluate the effects of krill oil (KO) on cognition and depression-like behaviour in rats. METHODS: Cognition was assessed using the Aversive Light Stimulus Avoidance Test (ALSAT). The Unavoidable Aversive Light Stimulus (UALST) and the Forced Swimming Test (FST) were used to evaluate the antidepressant-like effects of KO. Imipramine (IMIP) was used as the antidepressant reference substance. RESULTS: After 7 weeks of KO intake, both males and females treated with KO were significantly better in discriminating between the active and the inactive levers in the ALSAT from day 1 of training (p<0.01). Both KO and IMIP prevented resignation/depression on the third day in the UALST. Similarly, a shorter immobility time was observed for the KO and IMIP groups compared to the control in the FST (p<0.001). These data support a robust antidepressant-like potential and beneficial cognitive effect of KO. Changes in expression of synaptic plasticity-related genes in the prefrontal cortex and hippocampus were also investigated. mRNA for brain-derived neurotrophic factor (Bdnf) was specifically upregulated in the hippocampus of female rats receiving 7 weeks of KO supplementation (p=0.04) and a similar trend was observed in males (p=0.08). Males also exhibited an increase in prefrontal cortex expression of Arc mRNA, a key protein in long-term synaptic plasticity (p=0.05). IMIP induced clear effects on several plasticity related genes including Bdnf and Arc. CONCLUSIONS: These results indicate that active components (eicosapentaenoic acid, docosahexaenoic acid and astaxanthin) in KO facilitate learning processes and provide antidepressant-like effects. Our findings also suggest that KO might work through different physiological mechanisms than IMIP.


Assuntos
Antidepressivos/farmacologia , Cognição/efeitos dos fármacos , Depressão/prevenção & controle , Gorduras Insaturadas na Dieta/farmacologia , Euphausiacea/química , Nootrópicos/farmacologia , Animais , Antidepressivos/isolamento & purificação , Aprendizagem da Esquiva/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Depressão/metabolismo , Depressão/fisiopatologia , Gorduras Insaturadas na Dieta/isolamento & purificação , Feminino , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Imipramina/farmacologia , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Nootrópicos/isolamento & purificação , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Wistar , Natação
18.
Learn Mem ; 19(9): 410-22, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22904372

RESUMO

mRNA translation, or protein synthesis, is a major component of the transformation of the genetic code into any cellular activity. This complicated, multistep process is divided into three phases: initiation, elongation, and termination. Initiation is the step at which the ribosome is recruited to the mRNA, and is regarded as the major rate-limiting step in translation, while elongation consists of the elongation of the polypeptide chain; both steps are frequent targets for regulation, which is defined as a change in the rate of translation of an mRNA per unit time. In the normal brain, control of translation is a key mechanism for regulation of memory and synaptic plasticity consolidation, i.e., the off-line processing of acquired information. These regulation processes may differ between different brain structures or neuronal populations. Moreover, dysregulation of translation leads to pathological brain function such as memory impairment. Both normal and abnormal function of the translation machinery is believed to lead to translational up-regulation or down-regulation of a subset of mRNAs. However, the identification of these newly synthesized proteins and determination of the rates of protein synthesis or degradation taking place in different neuronal types and compartments at different time points in the brain demand new proteomic methods and system biology approaches. Here, we discuss in detail the relationship between translation regulation and memory or synaptic plasticity consolidation while focusing on a model of cortical-dependent taste learning task and hippocampal-dependent plasticity. In addition, we describe a novel systems biology perspective to better describe consolidation.


Assuntos
Regulação da Expressão Gênica/fisiologia , Memória/fisiologia , Biossíntese de Proteínas/fisiologia , Animais , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Humanos , MicroRNAs/metabolismo , Modelos Moleculares , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Neurônios/fisiologia , Neurotransmissores/metabolismo , Paladar/fisiologia
19.
Front Mol Neurosci ; 16: 1142361, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363319

RESUMO

The immediate early gene product activity-regulated cytoskeleton-associated protein (Arc or Arg3.1) is a major regulator of long-term synaptic plasticity with critical roles in postnatal cortical development and memory formation. However, the molecular basis of Arc function is undefined. Arc is a hub protein with interaction partners in the postsynaptic neuronal compartment and nucleus. Previous in vitro biochemical and biophysical analysis of purified recombinant Arc showed formation of low-order oligomers and larger particles including retrovirus-like capsids. Here, we provide evidence for naturally occurring Arc oligomers in the mammalian brain. Using in situ protein crosslinking to trap weak Arc-Arc interactions, we identified in various preparations a prominent Arc immunoreactive band on SDS-PAGE of molecular mass corresponding to a dimer. While putative trimers, tetramers and heavier Arc species were detected, they were of lower abundance. Stimulus-evoked induction of Arc expression and dimer formation was first demonstrated in SH-SY5Y neuroblastoma cells treated with the muscarinic cholinergic agonist, carbachol, and in primary cortical neuronal cultures treated with brain-derived neurotrophic factor (BDNF). In the dentate gyrus (DG) of adult anesthetized rats, induction of long-term potentiation (LTP) by high-frequency stimulation (HFS) of medial perforant synapses or by brief intrahippocampal infusion of BDNF led to a massive increase in Arc dimer expression. Arc immunoprecipitation of crosslinked DG tissue showed enhanced dimer expression during 4 h of LTP maintenance. Mass spectrometric proteomic analysis of immunoprecipitated, gel-excised bands corroborated detection of Arc dimer. Furthermore, Arc dimer was constitutively expressed in naïve cortical, hippocampal and DG tissue, with the lowest levels in the DG. Taken together the results implicate Arc dimer as the predominant low-oligomeric form in mammalian brain, exhibiting regional differences in its constitutive expression and enhanced synaptic activity-evoked expression in LTP.

20.
Front Mol Neurosci ; 16: 1140785, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415832

RESUMO

The activity-regulated cytoskeleton-associated (Arc) protein is essential for synaptic plasticity and memory formation. The Arc gene, which contains remnants of a structural GAG retrotransposon sequence, produces a protein that self-assembles into capsid-like structures harboring Arc mRNA. Arc capsids, released from neurons, have been proposed as a novel intercellular mechanism for mRNA transmission. Nevertheless, evidence for intercellular transport of Arc in the mammalian brain is still lacking. To enable the tracking of Arc molecules from individual neurons in vivo, we devised an adeno-associated virus (AAV) mediated approach to tag the N-terminal of the mouse Arc protein with a fluorescent reporter using CRISPR/Cas9 homologous independent targeted integration (HITI). We show that a sequence coding for mCherry can successfully be knocked in at the 5' end of the Arc open reading frame. While nine spCas9 gene editing sites surround the Arc start codon, the accuracy of the editing was highly sequence-dependent, with only a single target resulting in an in-frame reporter integration. When inducing long-term potentiation (LTP) in the hippocampus, we observed an increase of Arc protein highly correlated with an increase in fluorescent intensity and the number of mCherry-positive cells. By proximity ligation assay (PLA), we demonstrated that the mCherry-Arc fusion protein retains the Arc function by interacting with the transmembrane protein stargazin in postsynaptic spines. Finally, we recorded mCherry-Arc interaction with presynaptic protein Bassoon in mCherry-negative surrounding neurons at close proximity to mCherry-positive spines of edited neurons. This is the first study to provide support for inter-neuronal in vivo transfer of Arc in the mammalian brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA