Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 21(6): 2324-33, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21939064

RESUMO

The relative influence of habitat loss vs. habitat fragmentation per se (the breaking apart of habitat) on species distribution and abundance is a topic of debate. Although some theoretical studies predict a strong negative effect of fragmentation, consensus from empirical studies is that habitat fragmentation has weak effects compared with habitat loss and that these effects are as likely to be positive as negative. However, few empirical investigations of this issue have been conducted on tropical or wide-ranging species that may be strongly influenced by changes in patch size and edge that occur with increasing fragmentation. We tested the relative influence of habitat loss and fragmentation by examining occupancy of forest patches by 20 mid- and large-sized Neotropical mammal species in a fragmented landscape of northern Guatemala. We related patch occupancy of mammals to measures of habitat loss and fragmentation and compared the influence of these two factors while controlling for patch-level variables. Species responded strongly to both fragmentation and loss, and response to fragmentation generally was negative. Our findings support previous assumptions that conservation of large mammals in the tropics will require conservation strategies that go beyond prevention of habitat loss to also consider forest cohesion or other aspects of landscape configuration.


Assuntos
Ecossistema , Mamíferos/fisiologia , Clima Tropical , Animais , Demografia
2.
Oecologia ; 166(4): 1121-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21384177

RESUMO

Although native herbivores can alter fire regimes by consuming herbaceous vegetation that serves as fine fuel and, less commonly, accumulating fuel as nest material and other structures, simultaneous considerations of contrasting effects of herbivores on fire have scarcely been addressed. We proposed that a colonial rodent, vizcacha (Lagostomus maximus), reduces and increases fire intensity at different stages in its population cycle in the semiarid scrub of Argentina. Specifically, we hypothesized that, when colonies are active, vizcachas create natural fire-breaks through intense grazing, generating over time patches of large unburned shrubs in grazed zones. In contrast, when colonies are abandoned, recovery of fine fuels and previous accumulation of coarse wood on colonies during territorial displays increases fire intensity, creating patches of high shrub mortality. To test these hypotheses, we estimated stem age of the dominant shrub (Larrea divaricata) and measured aboveground biomass in zones actively grazed by vizcachas and in ungrazed zones, and compared densities of live and dead shrubs on abandoned colonies and adjacent zones following fire. In active colonies, age and biomass of shrubs were much greater in grazed than ungrazed zones. In abandoned colonies that had been burnt, density of dead, burned shrubs was higher and density of live shrubs was lower than in adjacent zones. These results support our hypotheses and reveal a new interaction between native herbivores and fire, in which herbivores augment fire intensity by gathering fuel. Our findings indicate that, through opposing effects on fire, native herbivores enhance the heterogeneity of vegetation in woody-dominated ecosystems.


Assuntos
Comportamento Animal , Ecossistema , Incêndios , Plantas , Roedores/psicologia , Animais , Argentina , Bovinos , Dinâmica Populacional
3.
Ecol Appl ; 19(7): 1708-22, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19831065

RESUMO

Conservation of species in fragmented landscapes often is guided by spatially realistic metapopulation theory. However, convincing cases of metapopulation dynamics are uncommon, especially for vertebrates. Moreover, there is concern that the patch area and isolation paradigm for metapopulations is an oversimplification for heterogeneous landscapes. We tested predictions from metapopulation theory for a rare wetland mammal (round-tailed muskrat, Neofiber alleni) and asked whether it was necessary to use a habitat-informed version of the area-isolation paradigm that included patch quality and matrix heterogeneity. In each of two years, we surveyed 457 isolated wetlands in central Florida, USA, for presence-absence of Neofiber and evaluated logistic regression models of patch occupancy, extinction, and colonization. We documented metapopulation dynamics in which patch occupancy was constant between years (26% of patches occupied) due to balanced local extinctions (n = 45) and recolonizations (n = 46). Neofiber was both habitat and dispersal limited. Local extinctions were related negatively to patch area, patch quality (cover of maidencane grass, Panicum hemitomon), and distance to nearest roadside ditch. Patch colonization depended on patch area, patch quality, and spatial connectivity to potential source wetlands. Despite the importance of patch quality, Neofiber did not exhibit a habitat-tracking metapopulation on an annual time scale. Cost-distance modeling suggested effective distances that included high costs for moving through forested matrix habitats generally were better than Euclidean distances for predicting patch colonization and occupancy. Two dominant land uses were tied to turnover dynamics: cattle grazing decreased habitat quality of wetlands, and presence of pine (Pinus spp.) plantations decreased functional connectivity. The simple area-isolation paradigm was not adequate for characterizing spatial dynamics of the Neofiber metapopulation. Nevertheless, we contend that the metapopulation approach remains a useful conservation framework for many species if landscape heterogeneity is embraced and explicit effects of land-use practices on turnover processes are considered.


Assuntos
Arvicolinae/fisiologia , Conservação dos Recursos Naturais , Áreas Alagadas , Animais , Extinção Biológica , Modelos Logísticos , Modelos Biológicos , Dinâmica Populacional
4.
PLoS One ; 13(2): e0192346, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29489855

RESUMO

Although the Andes have long been occupied by people, habitat loss, fragmentation through deforestation, and other human activities such as introduction of invasive species have increased drastically during the past century. The Ecuadorian Andes are considered a biodiversity hotspot. However, the fauna and threats to the region are poorly studied, and understanding of factors that shape the distribution of species in habitats disturbed by human activities is needed to identify and mitigate region-wide threats to wildlife. We evaluated factors associated with patterns of occurrence of Andean carnivores in landscapes of the northern Ecuadorian Andes, particularly habitat loss, fragmentation, and occupancy of domestic dogs, and determined whether thresholds occurred for these factors beyond which carnivore occurrence declined markedly. Five study areas (each 20 x 20 km) were surveyed with a total effort of 2,800 camera trap nights. Occupancies of four of the eight carnivores known from the region were best predicted by occupancy of domestic dogs rather than measures of habitat loss and fragmentation [Andean fox (Pseudalopex culpaeus), puma (Puma concolor), striped hog-nosed skunk (Conepatus semistriatus), and Andean bear (Tremarctos ornatus)]. The two largest carnivores, puma and Andean bear, demonstrated significant threshold responses to the presence of domestic dogs at two sites. Four smaller carnivores were recorded too infrequently to model occupancy, and at least two of these species appear to be in decline. The magnitude of domestic dog impacts on native species in tropical areas like the Ecuadorian Andes currently are not recognized. Results of our study indicate that small and large carnivores are in urgent need of conservation and clearly point to dogs as a significant threat to a broad range of native species.


Assuntos
Animais Domésticos , Carnívoros , Cães , Animais , Equador
5.
PLoS One ; 13(1): e0189740, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29298311

RESUMO

Roads are a main threat to biodiversity conservation in the Amazon, in part, because roads increase access for hunters. We examine how increased landscape access by hunters may lead to cascading effects that influence the prey community and abundance of the jaguar (Panthera onca), the top Amazonian terrestrial predator. Understanding such ecological effects originating from anthropogenic actions is essential for conservation and management of wildlife populations in areas undergoing infrastructure development. Our study was conducted in Yasuní Biosphere Reserve, the protected area with highest potential for jaguar conservation in Ecuador, and an area both threatened by road development and inhabited by indigenous groups dependent upon bushmeat. We surveyed prey and jaguar abundance with camera traps in four sites that differed in accessibility to hunters and used site occupancy and spatially explicit capture-recapture analyses to evaluate prey occurrence and estimate jaguar density, respectively. Higher landscape accessibility to hunters was linked with lower occurrence and biomass of game, particularly white-lipped peccary (Tayassu pecari) and collared peccary (Pecari tajacu), the primary game for hunters and prey for jaguars. Jaguar density was up to 18 times higher in the most remote site compared to the most accessible site. Our results provide a strong case for the need to: 1) consider conservation of large carnivores and other wildlife in policies about road construction in protected areas, 2) coordinate conservation initiatives with local governments so that development activities do not conflict with conservation objectives, and 3) promote development of community-based strategies for wildlife management that account for the needs of large carnivores.


Assuntos
Conservação dos Recursos Naturais/métodos , Panthera , Meios de Transporte , Animais , Biodiversidade , Equador , Dinâmica Populacional
6.
PLoS One ; 13(8): e0201137, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30133444

RESUMO

Activities of ecosystem engineers can interact with other disturbances to modulate rates of key processes such as productivity and nutrient cycling. Bioturbation, movement of soil by organisms, is a widespread form of ecosystem engineering in terrestrial ecosystems. We propose that bioturbation by southeastern pocket gophers (Geomys pinetis), an abundant but declining ecosystem engineer in longleaf pine (Pinus palustris Mill.) forests, accelerates nutrient dynamics of the forest floor by burying litter and then reduces litter consumption and nitrogen (N) volatilization losses in the presence of fire. We evaluated our hypothesis by measuring how litter burial alters decomposition and N and phosphorus (P) turnover of longleaf pine and turkey oak (Quercus laevis Walt.) litter over four years, and then simulated interactive ecosystem-level effects of litter burial and low-intensity fires on N and P dynamics of the litter layer. In the field, mass loss was over two times greater and N and P were released much more rapidly from litter buried beneath mounds than on the surface of the forest floor. At a measured rate of mound formation covering 2.3 ± 0.6% of the forest floor per year, litter mass and N and P content of the forest floor simulated over an eight-year period were approximately 11% less than amounts in areas without pocket gopher mounds. In contrast to unburied litter, litter beneath mounds is protected from consumption during fires, and as fire interval increased, consumption rates decreased because mounds cover more years of accumulated litter. Our research indicates that bioturbation and burial of litter by pocket gophers accelerates turnover of N and P on the forest floor, and in the presence of fire, conserves N in this ecosystem where productivity is known to be nutrient limited.


Assuntos
Monitorização de Parâmetros Ecológicos/métodos , Ecossistema , Solo/química , Animais , Incêndios , Florestas , Geômis , Mamíferos , Nitrogênio/química , Nutrientes , Valor Nutritivo , Fósforo/química , Pinus , Folhas de Planta/química , Árvores
7.
PLoS One ; 12(12): e0188877, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29211753

RESUMO

Large-scale ungulate migrations result in changes in prey availability for top predators and, as a consequence, can alter predator behavior. Migration may include entire populations of prey species, but often prey populations exhibit partial migration with some individuals remaining resident and others migrating. Interactions of migratory prey and predators have been documented in North America and some other parts of the world, but are poorly studied in South America. We examined the response of pumas (Puma concolor) to seasonal migration of guanacos (Lama guanicoe) in La Payunia Reserve in northern Patagonia Argentina, which is the site of the longest known ungulate migration in South America. More than 15,000 guanacos migrate seasonally in this landscape, and some guanacos also are resident year-round. We hypothesized that pumas would respond to the guanaco migration by consuming more alternative prey rather than migrating with guanacos because of the territoriality of pumas and availability of alternative prey throughout the year at this site. To determine whether pumas moved seasonally with the guanacos, we conducted camera trapping in the summer and winter range of guanacos across both seasons and estimated density of pumas with spatial mark-resight (SMR) models. Also, we analyzed puma scats to assess changes in prey consumption in response to guanaco migration. Density estimates of pumas did not change significantly in the winter and summer range of guanacos when guanacos migrated to and from these areas, indicating that pumas do not follow the migration of guanacos. Pumas also did not consume more alternative native prey or livestock when guanaco availability was lower, but rather fed primarily on guanacos and some alternative prey during all seasons. Alternative prey were most common in the diet during summer when guanacos also were abundant on the summer range. The response of pumas to the migration of guanacos differs from sites in the western North America where entire prey populations migrate and pumas migrate with their prey or switch to more abundant prey when their primary prey migrates.


Assuntos
Migração Animal , Puma/fisiologia , Animais , Argentina , Dieta , Comportamento Predatório , Estações do Ano
8.
Oecologia ; 106(3): 389-399, 1996 May.
Artigo em Inglês | MEDLINE | ID: mdl-28307327

RESUMO

We studied spatial and temporal effects of local extinction of the plains vizcacha (Lagostomus maximus) on plant communities following widespread, natural extinctions of vizcachas in semi-arid scrub of Argentina. Spatial patterns in vegetation were examined along transects extending outward from active and extinct vizcacha burrow systems. Responses of vegetation to removal of vizcachas were assessed experimentally with exclosures and by documenting vegetation dynamics for 6 years following extinctions. Transect data demonstrated clear spatial patterns in plant cover, particularly an increase in perennial grasses, outward from active vizcacha burrows. These patterns were consistent with predictions based on foraging theory and studies that document grasses as the preferred food of vizcachas. Removal of vizcachas, experimentally and with extinctions, resulted in an immediate increase in perennial and annual forbs indicating that intense herbivory can depress forb cover, as well as grasses. After a 1-year lag following cessation of herbivory, cover of grasses increased. Forbs declined as grasses increased. The long-term effect of extinction of vizcachas was a conversion of colony sites from open patches dominated by forbs to dense bunch grass characteristic of the matrix. Major changes in vegetation occurred within 2-3 years after extinction, resulting in a large pulse of landscape change. However, some species of grasses were uncommon until 5-6 years after the vizcacha extinction. With extinction and colonization, vizcachas generate a dynamic mosaic of patches on the landscape and create temporal, as well as spatial, heterogeneity in semi-arid scrub.

9.
PLoS One ; 9(12): e114916, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25489954

RESUMO

Protected areas are essential for conservation of wildlife populations. However, in the tropics there are two important factors that may interact to threaten this objective: 1) road development associated with large-scale resource extraction near or within protected areas; and 2) historical occupancy by traditional or indigenous groups that depend on wildlife for their survival. To manage wildlife populations in the tropics, it is critical to understand the effects of roads on the spatial extent of hunting and how wildlife is used. A geographical analysis can help us answer questions such as: How do roads affect spatial extent of hunting? How does market vicinity relate to local consumption and trade of bushmeat? How does vicinity to markets influence choice of game? A geographical analysis also can help evaluate the consequences of increased accessibility in landscapes that function as source-sink systems. We applied spatial analyses to evaluate the effects of increased landscape and market accessibility by road development on spatial extent of harvested areas and wildlife use by indigenous hunters. Our study was conducted in Yasuní Biosphere Reserve, Ecuador, which is impacted by road development for oil extraction, and inhabited by the Waorani indigenous group. Hunting activities were self-reported for 12-14 months and each kill was georeferenced. Presence of roads was associated with a two-fold increase of the extraction area. Rates of bushmeat extraction and trade were higher closer to markets than further away. Hunters located closer to markets concentrated their effort on large-bodied species. Our results clearly demonstrate that placing roads within protected areas can seriously reduce their capacity to sustain wildlife populations and potentially threaten livelihoods of indigenous groups who depend on these resources for their survival. Our results critically inform current policy debates regarding resource extraction and road building near or within protected areas.


Assuntos
Conservação dos Recursos Naturais , Geografia , Carne , Meios de Transporte , Animais , Animais Selvagens , Espécies em Perigo de Extinção , Humanos , Indígenas Sul-Americanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA