Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34548402

RESUMO

The timing of reproduction is an adaptive trait in many organisms. In plants, the timing, duration, and intensity of flowering differ between annual and perennial species. To identify interspecies variation in these traits, we studied introgression lines derived from hybridization of annual and perennial species, Arabis montbretiana and Arabis alpina, respectively. Recombination mapping identified two tandem A. montbretiana genes encoding MADS-domain transcription factors that confer extreme late flowering on A. alpina These genes are related to the MADS AFFECTING FLOWERING (MAF) cluster of floral repressors of other Brassicaceae species and were named A. montbretiana (Am) MAF-RELATED (MAR) genes. AmMAR1 but not AmMAR2 prevented floral induction at the shoot apex of A. alpina, strongly enhancing the effect of the MAF cluster, and MAR1 is absent from the genomes of all A. alpina accessions analyzed. Exposure of plants to cold (vernalization) represses AmMAR1 transcription and overcomes its inhibition of flowering. Assembly of the tandem arrays of MAR and MAF genes of six A. alpina accessions and three related species using PacBio long-sequence reads demonstrated that the MARs arose within the Arabis genus by interchromosomal transposition of a MAF1-like gene followed by tandem duplication. Time-resolved comparative RNA-sequencing (RNA-seq) suggested that AmMAR1 may be retained in A. montbretiana to enhance the effect of the AmMAF cluster and extend the duration of vernalization required for flowering. Our results demonstrate that MAF genes transposed independently in different Brassicaceae lineages and suggest that they were retained to modulate adaptive flowering responses that differ even among closely related species.


Assuntos
Arabis/metabolismo , Flores/metabolismo , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/metabolismo , Fenótipo , Proteínas de Plantas/metabolismo , Arabis/genética , Arabis/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética
2.
Plant J ; 95(3): 458-473, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29763523

RESUMO

Cytokinin plays diverse roles in plant growth and development, generally acting by modulating gene transcription in target tissues. The type-B Arabidopsis response regulators (ARR) transcription factors have emerged as primary targets of cytokinin signaling and are required for essentially all cytokinin-mediated changes in gene expression. The diversity of cytokinin function is likely imparted by the activity of various transcription factors working with the type-B ARRs to alter specific sets of target genes. One potential set of co-regulators modulating the cytokinin response are the BARLEY B-RECOMBINANT/BASIC PENTACYSTEINE (BBR/BPC) family of plant-specific transcription factors. Here, we show that disruption of multiple BPCs results in reduced sensitivity to cytokinin. Further, the BPCs are necessary for the induction of a subset of genes in response to cytokinin. We identified direct in vivo targets of BPC6 using ChIP-Seq and found an enrichment of promoters of genes differentially expressed in response to cytokinin. Further, a significant number of BPC6 regulated genes are also direct targets of the type-B ARRs. Potential cis-binding elements for a number of other transcription factors linked to cytokinin action are enriched in the BPC binding fragments, including those for the cytokinin response factors (CRFs). In addition, several BPCs interact with a subset of type-A ARRs. Consistent with these results, a significant number of genes whose expression is altered in bpc mutant roots are also mis-expressed in crf1,3,5,6 and type-A arr3,4,5,6,7,8,9,15 mutant roots. These results suggest that the BPCs are part of a complex network of transcription factors that are involved in the response to cytokinin.


Assuntos
Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Glucosiltransferases/metabolismo
3.
Plant Cell ; 26(4): 1746-1763, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24748042

RESUMO

Plant BZR1-BAM transcription factors contain a ß-amylase (BAM)-like domain, characteristic of proteins involved in starch breakdown. The enzyme-derived domains appear to be noncatalytic, but they determine the function of the two Arabidopsis thaliana BZR1-BAM isoforms (BAM7 and BAM8) during transcriptional initiation. Removal or swapping of the BAM domains demonstrates that the BAM7 BAM domain restricts DNA binding and transcriptional activation, while the BAM8 BAM domain allows both activities. Furthermore, we demonstrate that BAM7 and BAM8 interact on the protein level and cooperate during transcriptional regulation. Site-directed mutagenesis of residues in the BAM domain of BAM8 shows that its function as a transcriptional activator is independent of catalysis but requires an intact substrate binding site, suggesting it may bind a ligand. Microarray experiments with plants overexpressing truncated versions lacking the BAM domain indicate that the pseudo-enzymatic domain increases selectivity for the preferred cis-regulatory element BBRE (BZR1-BAM Responsive Element). Side specificity toward the G-box may allow crosstalk to other signaling networks. This work highlights the importance of the enzyme-derived domain of BZR1-BAMs, supporting their potential role as metabolic sensors.

4.
Plant Physiol ; 168(3): 1013-24, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26025051

RESUMO

Polycomb-repressive complexes (PRCs) play key roles in development by repressing a large number of genes involved in various functions. Much, however, remains to be discovered about PRC-silencing mechanisms as well as their targeting to specific genomic regions. Besides other mechanisms, GAGA-binding factors in animals can guide PRC members in a sequence-specific manner to Polycomb-responsive DNA elements. Here, we show that the Arabidopsis (Arabidopsis thaliana) GAGA-motif binding factor protein basic pentacysteine6 (BPC6) interacts with like heterochromatin protein1 (LHP1), a PRC1 component, and associates with vernalization2 (VRN2), a PRC2 component, in vivo. By using a modified DNA-protein interaction enzyme-linked immunosorbant assay, we could show that BPC6 was required and sufficient to recruit LHP1 to GAGA motif-containing DNA probes in vitro. We also found that LHP1 interacts with VRN2 and, therefore, can function as a possible scaffold between BPC6 and VRN2. The lhp1-4 bpc4 bpc6 triple mutant displayed a pleiotropic phenotype, extreme dwarfism and early flowering, which disclosed synergistic functions of LHP1 and group II plant BPC members. Transcriptome analyses supported this synergy and suggested a possible function in the concerted repression of homeotic genes, probably through histone H3 lysine-27 trimethylation. Hence, our findings suggest striking similarities between animal and plant GAGA-binding factors in the recruitment of PRC1 and PRC2 components to Polycomb-responsive DNA element-like GAGA motifs, which must have evolved through convergent evolution.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Motivos de Nucleotídeos/genética , Proteínas do Grupo Polycomb/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Transporte/metabolismo , Proteínas Cromossômicas não Histona/química , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Pleiotropia Genética , Histonas/metabolismo , Lisina/metabolismo , Metilação , Modelos Biológicos , Mutação/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína
5.
Nucleic Acids Res ; 41(21): 9764-78, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23975197

RESUMO

WRKY transcription factors constitute a large protein family in plants that is involved in the regulation of developmental processes and responses to biotic or abiotic stimuli. The question arises how stimulus-specific responses are mediated given that the highly conserved WRKY DNA-binding domain (DBD) exclusively recognizes the 'TTGACY' W-box consensus. We speculated that the W-box consensus might be more degenerate and yet undetected differences in the W-box consensus of WRKYs of different evolutionary descent exist. The phylogenetic analysis of WRKY DBDs suggests that they evolved from an ancestral group IIc-like WRKY early in the eukaryote lineage. A direct descent of group IIc WRKYs supports a monophyletic origin of all other group II and III WRKYs from group I by loss of an N-terminal DBD. Group I WRKYs are of paraphyletic descent and evolved multiple times independently. By homology modeling, molecular dynamics simulations and in vitro DNA-protein interaction-enzyme-linked immunosorbent assay with AtWRKY50 (IIc), AtWRKY33 (I) and AtWRKY11 (IId) DBDs, we revealed differences in DNA-binding specificities. Our data imply that other components are essentially required besides the W-box-specific binding to DNA to facilitate a stimulus-specific WRKY function.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Ligação a DNA/química , Fatores de Transcrição/química , Sequência de Aminoácidos , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/classificação , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo
6.
Genes (Basel) ; 14(8)2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37628689

RESUMO

Plants have evolved signaling mechanisms such as the multi-step phosphorelay (MSP) to respond to different internal and external stimuli. MSP responses often result in gene transcription regulation that is modulated through transcription factors such as B-type Arabidopsis response regulator (ARR) proteins. Among these proteins, ARR2 is a key component that is expressed ubiquitously and is involved in many aspects of plant development. Although it has been noted that B-type ARRs bind to their cognate genes through a DNA-binding domain termed the GARP domain, little is known about the structure and function of this type of DNA-binding domain; thus, how ARRs bind to DNA at a structural level is still poorly understood. In order to understand how the MSP functions in planta, it is crucial to unravel both the kinetics as well as the structural identity of the components involved in such interactions. For this reason, this work focusses on resolving how the GARP domain of ARR2 (GARP2) binds to the promoter region of ARR5, one of its native target genes in cytokinin signaling. We have established that GARP2 specifically binds to the ARR5 promoter with three different bi-molecular interaction systems-qDPI-ELISA, FCS, and MST-and we also determined the KD of this interaction. In addition, structural modeling of the GARP2 domain confirms that GARP2 entails a HTH motif, and that protein-DNA interaction most likely occurs via the α3-helix and the N-terminal arm of this domain since mutations in this region hinder ARR2's ability to activate transcription.


Assuntos
Arabidopsis , Arabidopsis/genética , Ensaio de Imunoadsorção Enzimática , Cinética , Mutação , Desenvolvimento Vegetal
7.
BMC Plant Biol ; 10: 285, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21176196

RESUMO

BACKGROUND: Throughout their lives plants produce new organs from groups of pluripotent cells called meristems, located at the tips of the shoot and the root. The size of the shoot meristem is tightly controlled by a feedback loop, which involves the homeodomain transcription factor WUSCHEL (WUS) and the CLAVATA (CLV) proteins. This regulatory circuit is further fine-tuned by morphogenic signals such as hormones and sugars. RESULTS: Here we show that a family of four plant-specific proteins, encoded by the FANTASTIC FOUR (FAF) genes, has the potential to regulate shoot meristem size in Arabidopsis thaliana. FAF2 and FAF4 are expressed in the centre of the shoot meristem, overlapping with the site of WUS expression. Consistent with a regulatory interaction between the FAF gene family and WUS, our experiments indicate that the FAFs can repress WUS, which ultimately leads to an arrest of meristem activity in FAF overexpressing lines. The finding that meristematic expression of FAF2 and FAF4 is under negative control by CLV3 further supports the hypothesis that the FAFs are modulators of the genetic circuit that regulates the meristem. CONCLUSION: This study reports the initial characterization of the Arabidopsis thaliana FAF gene family. Our data indicate that the FAF genes form a plant specific gene family, the members of which have the potential to regulate the size of the shoot meristem by modulating the CLV3-WUS feedback loop.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Meristema/genética , Brotos de Planta/genética , Proteínas Repressoras/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/classificação , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Glucuronidase/genética , Glucuronidase/metabolismo , Proteínas de Homeodomínio/genética , Hibridização In Situ , Meristema/crescimento & desenvolvimento , Meristema/ultraestrutura , Microscopia Eletrônica de Varredura , Análise de Sequência com Séries de Oligonucleotídeos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/ultraestrutura , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/crescimento & desenvolvimento
8.
Front Plant Sci ; 10: 466, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057577

RESUMO

Plant GAGA-motif binding factors are encoded by the BARLEY B RECOMBINANT / BASIC PENTACYSTEINE (BBR/BPC) family, which fulfill indispensable functions in growth and development. BBR/BPC proteins control flower development, size of the stem cell niche and seed development through transcriptional regulation of homeotic transcription factor genes. They are responsible for the context dependent recruitment of Polycomb repressive complexes (PRC) or other repressive proteins to GAGA-motifs, which are contained in Polycomb repressive DNA-elements (PREs). Hallmark of the protein family is the highly conserved BPC domain, which is required for DNA binding. Here we study the evolution and diversification of the BBR/BPC family and its DNA-binding domain. Our analyses supports a further division of the family into four main groups (I-IV) and several subgroups, to resolve a strict monophyletic descent of the BPC domain. We prove a polyphyletic origin for group III proteins, which evolved from group I and II members through extensive loss of domains in the N-terminus. Conserved motif searches lend to the identification of a WAR/KHGTN consensus and a TIR/K motif at the very C-terminus of the BPC-domain. We could show by DPI-ELISA that this signature is required for DNA-binding in AtBPC1. Additional binding studies with AtBPC1, AtBPC6 and mutated oligonucleotides consolidated the binding to GAGA tetramers. To validate these findings, we used previously published ChIP-seq data from GFP-BPC6. We uncovered that many genes of the brassinosteroid signaling pathway are targeted by AtBPC6. Consistently, bpc6, bpc4 bpc6, and lhp1 bpc4 bpc4 mutants display brassinosteroid-dependent root growth phenotypes. Both, a function in brassinosteroid signaling and our phylogenetic data supports a link between BBR/BPC diversification in the land plant lineage and the complexity of flower and seed plant evolution.

9.
PLoS One ; 8(10): e75177, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146751

RESUMO

DNA-binding proteins (DBPs), such as transcription factors, constitute about 10% of the protein-coding genes in eukaryotic genomes and play pivotal roles in the regulation of chromatin structure and gene expression by binding to short stretches of DNA. Despite their number and importance, only for a minor portion of DBPs the binding sequence had been disclosed. Methods that allow the de novo identification of DNA-binding motifs of known DBPs, such as protein binding microarray technology or SELEX, are not yet suited for high-throughput and automation. To close this gap, we report an automatable DNA-protein-interaction (DPI)-ELISA screen of an optimized double-stranded DNA (dsDNA) probe library that allows the high-throughput identification of hexanucleotide DNA-binding motifs. In contrast to other methods, this DPI-ELISA screen can be performed manually or with standard laboratory automation. Furthermore, output evaluation does not require extensive computational analysis to derive a binding consensus. We could show that the DPI-ELISA screen disclosed the full spectrum of binding preferences for a given DBP. As an example, AtWRKY11 was used to demonstrate that the automated DPI-ELISA screen revealed the entire range of in vitro binding preferences. In addition, protein extracts of AtbZIP63 and the DNA-binding domain of AtWRKY33 were analyzed, which led to a refinement of their known DNA-binding consensi. Finally, we performed a DPI-ELISA screen to disclose the DNA-binding consensus of a yet uncharacterized putative DBP, AtTIFY1. A palindromic TGATCA-consensus was uncovered and we could show that the GATC-core is compulsory for AtTIFY1 binding. This specific interaction between AtTIFY1 and its DNA-binding motif was confirmed by in vivo plant one-hybrid assays in protoplasts. Thus, the value and applicability of the DPI-ELISA screen for de novo binding site identification of DBPs, also under automatized conditions, is a promising approach for a deeper understanding of gene regulation in any organism of choice.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , DNA/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Automação Laboratorial , Fatores de Transcrição de Zíper de Leucina Básica/genética , Sítios de Ligação , DNA/genética , Ensaio de Imunoadsorção Enzimática/instrumentação , Biblioteca Gênica , Ensaios de Triagem em Larga Escala , Ligação Proteica , Fatores de Transcrição/genética
10.
Plant Methods ; 6: 25, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-21108821

RESUMO

BACKGROUND: About 10% of all genes in eukaryote genomes are predicted to encode transcription factors. The specific binding of transcription factors to short DNA-motifs influences the expression of neighbouring genes. However, little is known about the DNA-protein interaction itself. To date there are only a few suitable methods to characterise DNA-protein-interactions, among which the EMSA is the method most frequently used in laboratories. Besides EMSA, several protocols describe the effective use of an ELISA-based transcription factor binding assay e.g. for the analysis of human NFκB binding to specific DNA sequences. RESULTS: We provide a unified protocol for this type of ELISA analysis, termed DNA-Protein-Interaction (DPI)-ELISA. Qualitative analyses with His-epitope tagged plant transcription factors expressed in E. coli revealed that EMSA and DPI-ELISA result in comparable and reproducible data. The binding of AtbZIP63 to the C-box and AtWRKY11 to the W2-box could be reproduced and validated by both methods. We next examined the physical binding of the C-terminal DNA-binding domains of AtWRKY33, AtWRKY50 and AtWRKY75 to the W2-box. Although the DNA-binding domain is highly conserved among the WRKY proteins tested, the use of the DPI-ELISA discloses differences in W2-box binding properties between these proteins. In addition to these well-studied transcription factor families, we applied our protocol to AtBPC2, a member of the so far uncharacterised plant specific Basic Pentacysteine transcription factor family. We could demonstrate binding to GA/TC-dinucleotide repeat motifs by our DPI-ELISA protocol. Different buffers and reaction conditions were examined. CONCLUSIONS: We successfully applied our DPI-ELISA protocol to investigate the DNA-binding specificities of three different classes of transcription factors from Arabidopsis thaliana. However, the analysis of the binding affinity of any DNA-binding protein to any given DNA sequence can be performed via this method. The DPI-ELISA is cost efficient, less time-consuming than other methods and provides a qualitative and quantitative readout. The presented DPI-ELISA protocol is accompanied by advice on trouble-shooting, which will enable scientists to rapidly establish this versatile and easy to use method in their laboratories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA