Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Infect Immun ; 92(7): e0019924, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38842305

RESUMO

Enterococcus faecalis is a common cause of healthcare-acquired bloodstream infections and catheter-associated urinary tract infections (CAUTIs) in both adults and children. Treatment of E. faecalis infection is frequently complicated by multi-drug resistance. Based on protein homology, E. faecalis encodes two putative hyaluronidases, EF3023 (HylA) and EF0818 (HylB). In other Gram-positive pathogens, hyaluronidases have been shown to contribute to tissue damage and immune evasion, but the function in E. faecalis has yet to be explored. Here, we show that both hylA and hylB contribute to E. faecalis pathogenesis. In a CAUTI model, ΔhylA exhibited defects in bladder colonization and dissemination to the bloodstream, and ΔhylB exhibited a defect in kidney colonization. Furthermore, a ΔhylAΔhylB double mutant exhibited a severe colonization defect in a model of bacteremia while the single mutants colonized to a similar level as the wild-type strain, suggesting potential functional redundancy within the bloodstream. We next examined enzymatic activity, and demonstrate that HylB is capable of digesting both hyaluronic acid (HA) and chondroitin sulfate in vitro, while HylA exhibits only a very modest activity against heparin. Importantly, HA degradation by HylB provided a modest increase in cell density during the stationary phase and also contributed to dampening of lipopolysaccharide-mediated NF-κB activation. Overall, these data demonstrate that glycosaminoglycan degradation is important for E. faecalis pathogenesis in the urinary tract and during bloodstream infection.


Assuntos
Bacteriemia , Infecções Relacionadas a Cateter , Enterococcus faecalis , Glicosaminoglicanos , Infecções por Bactérias Gram-Positivas , Infecções Urinárias , Enterococcus faecalis/genética , Enterococcus faecalis/enzimologia , Enterococcus faecalis/metabolismo , Infecções Urinárias/microbiologia , Bacteriemia/microbiologia , Infecções Relacionadas a Cateter/microbiologia , Animais , Infecções por Bactérias Gram-Positivas/microbiologia , Camundongos , Glicosaminoglicanos/metabolismo , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Feminino , Humanos , Ácido Hialurônico/metabolismo
2.
Mol Microbiol ; 118(3): 125-144, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35970717

RESUMO

Proteus mirabilis is a common cause of urinary tract infection, especially in catheterized individuals. Amino acids are the predominant nutrient for bacteria during growth in urine, and our prior studies identified several amino acid import and catabolism genes as fitness factors for P. mirabilis catheter-associated urinary tract infection (CAUTI), particularly those for d- and l-serine. In this study, we sought to determine the hierarchy of amino acid utilization by P. mirabilis and to examine the relative importance of d- vs l-serine catabolism for critical steps in CAUTI development and progression. Herein, we show that P. mirabilis preferentially catabolizes l-serine during growth in human urine, followed by d-serine, threonine, tyrosine, glutamine, tryptophan, and phenylalanine. Independently disrupting catabolism of either d- or l-serine has minimal impact on in vitro phenotypes while completely disrupting both pathways decreases motility, biofilm formation, and fitness due to perturbation of membrane potential and cell wall biosynthesis. In a mouse model of CAUTI, loss of either serine catabolism system decreased fitness, but disrupting l-serine catabolism caused a greater fitness defect than disrupting d-serine catabolism. We, therefore, conclude that the hierarchical utilization of amino acids may be a critical component of P. mirabilis colonization and pathogenesis within the urinary tract.


Assuntos
Infecções por Proteus , Infecções Urinárias , Animais , Catéteres , Humanos , Camundongos , Infecções por Proteus/genética , Infecções por Proteus/microbiologia , Proteus mirabilis/metabolismo , Serina/metabolismo , Infecções Urinárias/microbiologia , Infecções Urinárias/patologia
3.
Infect Immun ; 89(10): e0017721, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34280035

RESUMO

Proteus mirabilis is a leading uropathogen of catheter-associated urinary tract infections (CAUTIs), which are among the most common health care-associated infections worldwide. A key factor that contributes to P. mirabilis pathogenesis and persistence during CAUTI is the formation of catheter biofilms, which provide increased resistance to antibiotic treatment and host defense mechanisms. Another factor that is important for bacterial persistence during CAUTI is the ability to resist reactive oxygen species (ROS), such as through the action of the catalase enzyme. Potent catalase activity is one of the defining biochemical characteristics of P. mirabilis, and the single catalase (katA) gene in strain HI4320 was recently identified as a candidate fitness factor for UTI, CAUTI, and bacteremia. Here, we show that disruption of katA results in increased ROS levels, increased sensitivity to peroxide, and decreased biofilm biomass. The biomass defect was due to a decrease in the production of extracellular polymeric substances (EPS) by the ΔkatA mutant and specifically due to reduced carbohydrate content. Importantly, the biofilm defect resulted in decreased antibiotic resistance in vitro and a colonization defect during experimental CAUTI. The ΔkatA mutant also exhibited decreased fitness in a bacteremia model, supporting a dual role for catalase in P. mirabilis biofilm development and immune evasion.


Assuntos
Biofilmes/crescimento & desenvolvimento , Catalase/metabolismo , Infecções Relacionadas a Cateter/microbiologia , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Infecções por Proteus/microbiologia , Proteus mirabilis/enzimologia , Infecções Urinárias/microbiologia , Animais , Antibacterianos/farmacologia , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Biofilmes/efeitos dos fármacos , Infecções Relacionadas a Cateter/tratamento farmacológico , Catéteres/microbiologia , Coinfecção/tratamento farmacológico , Coinfecção/microbiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos CBA , Infecções por Proteus/tratamento farmacológico , Proteus mirabilis/efeitos dos fármacos , Infecções Urinárias/tratamento farmacológico
4.
Mol Microbiol ; 114(2): 185-199, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32255226

RESUMO

Proteus mirabilis is a Gram-negative uropathogen and frequent cause of catheter-associated urinary tract infection (CAUTI). One important virulence factor is its urease enzyme, which requires nickel to be catalytically active. It is, therefore, hypothesized that nickel import is critical for P. mirabilis urease activity and pathogenesis during infection. P. mirabilis strain HI4320 encodes two putative nickel import systems, designated Nik and Ynt. By disrupting the substrate-binding proteins from each import system (nikA and yntA), we show that Ynt is the primary nickel importer, while Nik only compensates for loss of Ynt at high nickel concentrations. We further demonstrate that these are the only binding proteins capable of importing nickel for incorporation into the urease enzyme. Loss of either nickel-binding protein results in a significant fitness defect in a murine model of CAUTI, but YntA is more crucial as the yntA mutant was significantly outcompeted by the nikA mutant. Furthermore, despite the importance of nickel transport for hydrogenase activity, the sole contribution of yntA and nikA to virulence is due to their role in urease activity, as neither mutant exhibited a fitness defect when disrupted in a urease-negative background.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Níquel/metabolismo , Proteus mirabilis/metabolismo , Transportadores de Cassetes de Ligação de ATP/fisiologia , Sequência de Aminoácidos/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Urease/genética , Urease/metabolismo , Virulência , Fatores de Virulência
5.
PLoS Pathog ; 15(4): e1007653, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31009518

RESUMO

The Gram-negative bacterium Proteus mirabilis is a common cause of catheter-associated urinary tract infections (CAUTI), which can progress to secondary bacteremia. While numerous studies have investigated experimental infection with P. mirabilis in the urinary tract, little is known about pathogenesis in the bloodstream. This study identifies the genes that are important for survival in the bloodstream using a whole-genome transposon insertion-site sequencing (Tn-Seq) approach. A library of 50,000 transposon mutants was utilized to assess the relative contribution of each non-essential gene in the P. mirabilis HI4320 genome to fitness in the livers and spleens of mice at 24 hours following tail vein inoculation compared to growth in RPMI, heat-inactivated (HI) naïve serum, and HI acute phase serum. 138 genes were identified as ex vivo fitness factors in serum, which were primarily involved in amino acid transport and metabolism, and 143 genes were identified as infection-specific in vivo fitness factors for both spleen and liver colonization. Infection-specific fitness factors included genes involved in twin arginine translocation, ammonia incorporation, and polyamine biosynthesis. Mutants in sixteen genes were constructed to validate both the ex vivo and in vivo results of the transposon screen, and 12/16 (75%) exhibited the predicted phenotype. Our studies indicate a role for the twin arginine translocation (tatAC) system in motility, translocation of potential virulence factors, and fitness within the bloodstream. We also demonstrate the interplay between two nitrogen assimilation pathways in the bloodstream, providing evidence that the GS-GOGAT system may be preferentially utilized. Furthermore, we show that a dual-function arginine decarboxylase (speA) is important for fitness within the bloodstream due to its role in putrescine biosynthesis rather than its contribution to maintenance of membrane potential. This study therefore provides insight into pathways needed for fitness within the bloodstream, which may guide strategies to reduce bacteremia-associated mortality.


Assuntos
Amônia/metabolismo , Arginina/metabolismo , Bacteriemia/microbiologia , Poliaminas/metabolismo , Infecções por Proteus/microbiologia , Proteus mirabilis/crescimento & desenvolvimento , Fatores de Virulência/metabolismo , Animais , Bacteriemia/genética , Bacteriemia/metabolismo , Elementos de DNA Transponíveis , Feminino , Aptidão Genética , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos Endogâmicos CBA , Fenótipo , Infecções por Proteus/genética , Infecções por Proteus/metabolismo , Translocação Genética , Fatores de Virulência/genética
6.
J Infect Dis ; 219(9): 1448-1455, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30496439

RESUMO

BACKGROUND: Persistence of bacterial pathogens in the airways has profound consequences on the course and pathogenesis of chronic obstructive pulmonary disease (COPD). Patients with COPD continuously acquire and clear strains of Moraxella catarrhalis, a major pathogen in COPD. Some strains are cleared quickly and some persist for months to years. The mechanism of the variability in duration of persistence is unknown. METHODS: Guided by genome sequences of selected strains, we studied the expression of Hag/MID, hag/mid gene sequences, adherence to human cells, and autoaggregation in longitudinally collected strains of M. catarrhalis from adults with COPD. RESULTS: Twenty-eight of 30 cleared strains of M. catarrhalis expressed Hag/MID whereas 17 of 30 persistent strains expressed Hag/MID upon acquisition by patients. All persistent strains ceased expression of Hag/MID during persistence. Expression of Hag/MID in human airways was regulated by slipped-strand mispairing. Virulence-associated phenotypes (adherence to human respiratory epithelial cells and autoaggregation) paralleled Hag/MID expression in airway isolates. CONCLUSIONS: Most strains of M. catarrhalis express Hag/MID upon acquisition by adults with COPD and all persistent strains shut off expression during persistence. These observations suggest that Hag/MID is important for initial colonization by M. catarrhalis and that cessation of expression facilitates persistence in COPD airways.


Assuntos
Adesinas Bacterianas/genética , Moraxella catarrhalis/genética , Moraxella catarrhalis/patogenicidade , Infecções por Moraxellaceae/microbiologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Sistema Respiratório/microbiologia , Adulto , Aderência Bacteriana , Expressão Gênica , Humanos , Moraxella catarrhalis/fisiologia , Fenótipo , Fatores de Virulência/genética
7.
Infect Immun ; 88(1)2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31611275

RESUMO

Catheter-associated urinary tract infections (CAUTIs) are common hospital-acquired infections and frequently polymicrobial, which complicates effective treatment. However, few studies experimentally address the consequences of polymicrobial interactions within the urinary tract, and the clinical significance of polymicrobial bacteriuria is not fully understood. Proteus mirabilis is one of the most common causes of monomicrobial and polymicrobial CAUTI and frequently cocolonizes with Enterococcus faecalis, Escherichia coli, Providencia stuartii, and Morganella morganiiP. mirabilis infections are particularly challenging due to its potent urease enzyme, which facilitates formation of struvite crystals, catheter encrustation, blockage, and formation of urinary stones. We previously determined that interactions between P. mirabilis and other uropathogens can enhance P. mirabilis urease activity, resulting in greater disease severity during experimental polymicrobial infection. Our present work reveals that M. morganii acts on P. mirabilis in a contact-independent manner to decrease urease activity. Furthermore, M. morganii actively prevents urease enhancement by E. faecalis, P. stuartii, and E. coli Importantly, these interactions translate to modulation of disease severity during experimental CAUTI, predominantly through a urease-dependent mechanism. Thus, products secreted by multiple bacterial species in the milieu of the catheterized urinary tract can directly impact prognosis.


Assuntos
Antibiose , Infecções Relacionadas a Cateter/patologia , Coinfecção/patologia , Morganella morganii/crescimento & desenvolvimento , Proteus mirabilis/enzimologia , Urease/metabolismo , Infecções Urinárias/patologia , Animais , Infecções Relacionadas a Cateter/microbiologia , Coinfecção/microbiologia , Modelos Animais de Doenças , Enterococcus faecalis/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Camundongos , Proteus mirabilis/crescimento & desenvolvimento , Providencia/crescimento & desenvolvimento , Infecções Urinárias/microbiologia
8.
J Antimicrob Chemother ; 72(1): 137-144, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986898

RESUMO

BACKGROUND: Antisense peptide nucleic acids (PNAs) are synthetic polymers that mimic DNA/RNA and inhibit bacterial gene expression in a sequence-specific manner. METHODS: To assess activity against non-typeable Haemophilus influenzae (NTHi), we designed six PNA-peptides that target acpP, encoding an acyl carrier protein. MICs and minimum biofilm eradication concentrations (MBECs) were determined. Resistant strains were selected by serial passages on media with a sub-MIC concentration of acpP-PNA. RESULTS: The MICs of six acpP-PNA-peptides were 2.9-11 mg/L (0.63-2.5 µmol/L) for 20 clinical isolates, indicating susceptibility of planktonic NTHi. By contrast, MBECs were up to 179 mg/L (40 µmol/L). Compared with one original PNA-peptide (acpP-PNA1-3'N), an optimized PNA-peptide (acpP-PNA14-5'L) differs in PNA sequence and has a 5' membrane-penetrating peptide with a linker between the PNA and peptide. The optimized PNA-peptide had an MBEC ranging from 11 to 23 mg/L (2.5-5 µmol/L), indicating susceptibility. A resistant strain that was selected by the original acpP-PNA1-3'N had an SNP that introduced a stop codon in NTHI0044, which is predicted to encode an ATP-binding protein of a conserved ABC transporter. Deletion of NTHI0044 caused resistance to the original acpP-PNA1-3'N, but showed no effect on susceptibility to the optimized acpP-PNA14-5'L. The WT strain remained susceptible to the optimized PNA-peptide after 30 serial passages on media containing the optimized PNA-peptide. CONCLUSIONS: A PNA-peptide that targets acpP, has a 5' membrane-penetrating peptide and has a linker shows excellent activity against planktonic and biofilm NTHi and is associated with a low risk for induction of resistance.


Assuntos
Proteína de Transporte de Acila/antagonistas & inibidores , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Haemophilus influenzae/efeitos dos fármacos , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Ácidos Nucleicos Peptídicos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Farmacorresistência Bacteriana , Haemophilus influenzae/fisiologia , Testes de Sensibilidade Microbiana , Inoculações Seriadas
9.
Infect Immun ; 82(11): 4758-66, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25156736

RESUMO

Moraxella catarrhalis is a strict human pathogen that causes otitis media in children and exacerbations of chronic obstructive pulmonary disease in adults, resulting in significant worldwide morbidity and mortality. M. catarrhalis has a growth requirement for arginine; thus, acquiring arginine is important for fitness and survival. M. catarrhalis has a putative oligopeptide permease ABC transport operon (opp) consisting of five genes (oppB, oppC, oppD, oppF, and oppA), encoding two permeases, two ATPases, and a substrate binding protein. Thermal shift assays showed that the purified recombinant substrate binding protein OppA binds to peptides 3 to 16 amino acid residues in length regardless of the amino acid composition. A mutant in which the oppBCDFA gene cluster is knocked out showed impaired growth in minimal medium where the only source of arginine came from a peptide 5 to 10 amino acid residues in length. Whether methylated arginine supports growth of M. catarrhalis is important in understanding fitness in the respiratory tract because methylated arginine is abundant in host tissues. No growth of wild-type M. catarrhalis was observed in minimal medium in which arginine was present only in methylated form, indicating that the bacterium requires l-arginine. An oppA knockout mutant showed marked impairment in its capacity to persist in the respiratory tract compared to the wild type in a mouse pulmonary clearance model. We conclude that the Opp system mediates both uptake of peptides and fitness in the respiratory tract.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Moraxella catarrhalis/enzimologia , Infecções por Moraxellaceae/microbiologia , Infecções Respiratórias/microbiologia , Animais , Proteínas de Bactérias/genética , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos BALB C , Moraxella catarrhalis/genética , Moraxella catarrhalis/metabolismo , Família Multigênica , Mutação , Proteínas Recombinantes
10.
bioRxiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38766094

RESUMO

Enterococcus faecalis is a common cause of healthcare acquired bloodstream infections and catheter associated urinary tract infections (CAUTI) in both adults and children. Treatment of E. faecalis infection is frequently complicated by multi-drug resistance. Based on protein homology, E. faecalis encodes two putative hyaluronidases, EF3023 (HylA) and EF0818 (HylB). In other Gram-positive pathogens, hyaluronidases have been shown to contribute to tissue damage and immune evasion, but function in E. faecalis has yet to be explored. Here, we show that both hylA and hylB contribute to E. faecalis pathogenesis. In a CAUTI model, Δ hylA exhibited defects in bladder colonization and dissemination to the bloodstream, and Δ hylB exhibited a defect in kidney colonization. Furthermore, a Δ hylA Δ hylB double mutant exhibited a severe colonization defect in a model of bacteremia while the single mutants colonized to a similar level as the wild-type strain, suggesting potential functional redundancy within the bloodstream. We next examined enzymatic activity, and demonstrate that HylB is capable of digesting both HA and CS in vitro while HylA exhibits only a very modest activity against heparin. Importantly, HA degradation by HylB provided a modest increase in cell density during stationary phase and also contributed to dampening of LPS-mediated NF-Bκ activation. Overall, these data demonstrate that glycosaminoglycan degradation is important for E. faecalis pathogenesis in the urinary tract and during bloodstream infection.

11.
Infect Immun ; 81(9): 3406-13, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23817618

RESUMO

Moraxella catarrhalis is a human respiratory tract pathogen that causes otitis media in children and lower respiratory tract infections in adults with chronic obstructive pulmonary disease. We have identified and characterized a zinc uptake ABC transporter that is present in all strains of M. catarrhalis tested. A mutant in which the znu gene cluster is knocked out shows markedly impaired growth compared to the wild type in medium that contains trace zinc; growth is restored to wild-type levels by supplementing medium with zinc but not with other divalent cations. Thermal-shift assays showed that the purified recombinant substrate binding protein ZnuA binds zinc but does not bind other divalent cations. Invasion assays with human respiratory epithelial cells demonstrated that the zinc ABC transporter of M. catarrhalis is critical for invasion of respiratory epithelial cells, an observation that is especially relevant because an intracellular reservoir of M. catarrhalis is present in the human respiratory tract and this reservoir is important for persistence. The znu knockout mutant showed marked impairment in its capacity to persist in the respiratory tract compared to the wild type in a mouse pulmonary clearance model. We conclude that the zinc uptake ABC transporter mediates uptake of zinc in environments with very low zinc concentrations and is critical for full virulence of M. catarrhalis in the respiratory tract in facilitating intracellular invasion of epithelial cells and persistence in the respiratory tract.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Transporte/metabolismo , Moraxella catarrhalis/metabolismo , Infecções por Moraxellaceae/metabolismo , Infecções Respiratórias/metabolismo , Zinco/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Proteínas de Transporte/genética , Linhagem Celular , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Moraxella catarrhalis/genética , Moraxella catarrhalis/patogenicidade , Infecções por Moraxellaceae/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sistema Respiratório/metabolismo , Sistema Respiratório/microbiologia , Infecções Respiratórias/genética , Infecções Respiratórias/microbiologia , Virulência/genética
12.
Pathogens ; 12(12)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38133262

RESUMO

Proteus mirabilis is a common uropathogen and a leading cause of catheter-associated urinary tract infections (CAUTIs), which are often polymicrobial. Through a genome-wide screen, we previously identified two [NiFe] hydrogenases as candidate fitness factors for P. mirabilis CAUTI: a Hyb-type Group 1c H2-uptake hydrogenase and a Hyf-type Group 4a H2-producing hydrogenase. In this study, we disrupted one gene of each system (hyfE and hybC) and also generated a double mutant to examine the contribution of flexible H2 metabolism to P. mirabilis growth and fitness in vitro and during experimental CAUTI. Since P. mirabilis is typically present as part of a polymicrobial community in the urinary tract, we also examined the impact of two common co-colonization partners, Providencia stuartii and Enterococcus faecalis, on the expression and contribution of each hydrogenase to fitness. Our data demonstrate that neither system alone is critical for P. mirabilis growth in vitro or fitness during experimental CAUTI. However, perturbation of flexible H2 metabolism in the ∆hybC∆hyfE double mutant decreased P. mirabilis fitness in vitro and during infection. The Hyf system alone contributed to the generation of proton motive force and swarming motility, but only during anaerobic conditions. Unexpectedly, both systems contributed to benzyl viologen reduction in TYET medium, and disruption of either system increased expression of the other. We further demonstrate that polymicrobial interactions with P. stuartii and E. faecalis alter the expression of Hyb and Hyf in vitro as well as the contribution of each system to P. mirabilis fitness during CAUTI.

13.
bioRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993593

RESUMO

Polymicrobial biofilms play an important role in the development and pathogenesis of CAUTI. Proteus mirabilis and Enterococcus faecalis are common CAUTI pathogens that persistently co-colonize the catheterized urinary tract and form biofilms with increased biomass and antibiotic resistance. In this study, we uncover the metabolic interplay that drives biofilm enhancement and examine the contribution to CAUTI severity. Through compositional and proteomic biofilm analyses, we determined that the increase in biofilm biomass stems from an increase in the protein fraction of the polymicrobial biofilm matrix. We further observed an enrichment in proteins associated with ornithine and arginine metabolism in polymicrobial biofilms compared to single-species biofilms. We show that L-ornithine secretion by E. faecalis promotes arginine biosynthesis in P. mirabilis, and that disruption of this metabolic interplay abrogates the biofilm enhancement we see in vitro and leads to significant decreases in infection severity and dissemination in a murine CAUTI model.

14.
BMC Microbiol ; 11: 183, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21843372

RESUMO

BACKGROUND: Nontypeable Haemophilus influenzae is a common cause of otitis media in children and lower respiratory tract infection in adults with chronic obstructive pulmonary disease (COPD). Prior studies have shown that H. influenzae expresses abundant urease during growth in the middle ear of the chinchilla and in pooled human sputum, suggesting that expression of urease is important for colonization and infection in the hostile environments of the middle ear and in the airways in adults. Virtually nothing else is known about the urease of H. influenzae, which was characterized in the present study. RESULTS: Analysis by reverse transcriptase PCR revealed that the ure gene cluster is expressed as a single transcript. Knockout mutants of a urease structural gene (ureC) and of the entire ure operon demonstrated no detectable urease activity indicating that this operon is the only one encoding an active urease. The ure operon is present in all strains tested, including clinical isolates from otitis media and COPD. Urease activity decreased as nitrogen availability increased. To test the hypothesis that urease is expressed during human infection, purified recombinant urease C was used in ELISA with pre acquisition and post infection serum from adults with COPD who experienced infections caused by H. influenzae. A total of 28% of patients developed new antibodies following infection indicating that H. influenzae expresses urease during airway infection. Bacterial viability assays performed at varying pH indicate that urease mediates survival of H. influenzae in an acid environment. CONCLUSIONS: The H. influenzae genome contains a single urease operon that mediates urease expression and that is present in all clinical isolates tested. Nitrogen availability is a determinant of urease expression. H. influenzae expresses urease during human respiratory tract infection and urease is a target of the human antibody response. Expression of urease enhances viability in an acid environment. Taken together, these observations suggest that urease is important for survival and replication of H. influenzae in the human respiratory tract.


Assuntos
Ácidos/toxicidade , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/enzimologia , Haemophilus influenzae/patogenicidade , Viabilidade Microbiana/efeitos dos fármacos , Infecções Respiratórias/microbiologia , Urease/biossíntese , Adulto , Animais , Anticorpos Antibacterianos/sangue , Ensaio de Imunoadsorção Enzimática , Deleção de Genes , Expressão Gênica , Perfilação da Expressão Gênica , Infecções por Haemophilus/imunologia , Haemophilus influenzae/imunologia , Humanos , Família Multigênica , Infecções Respiratórias/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Urease/genética , Urease/imunologia
15.
JCI Insight ; 6(19)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34473649

RESUMO

BACKGROUNDCatheterization facilitates continuous bacteriuria, for which the clinical significance remains unclear. This study aimed to determine the clinical presentation, epidemiology, and dynamics of bacteriuria in a cohort of long-term catheterized nursing home residents.METHODSProspective urine culture, urinalysis, chart review, and assessment of signs and symptoms of infection were performed weekly for 19 study participants over 7 months. All bacteria ≥ 1 × 103 cfu/mL were cultured, isolated, identified, and tested for susceptibility to select antimicrobials.RESULTSIn total, 226 of the 234 urine samples were polymicrobial (97%), with an average of 4.7 isolates per weekly specimen. A total of 228 urine samples (97%) exhibited ≥ 1 × 106 CFU/mL, 220 (94%) exhibited abnormal urinalysis, 126 (54%) were associated with at least 1 possible sign or symptom of infection, and 82 (35%) would potentially meet a standardized definition of catheter-associated urinary tract infection (CAUTI), but only 3 had a caregiver diagnosis of CAUTI. Bacterial isolates (286; 30%) were resistant to a tested antimicrobial agent, and bacteriuria composition was remarkably stable despite a combined total of 54 catheter changes and 23 weeks of antimicrobial use.CONCLUSIONBacteriuria composition was largely polymicrobial, including persistent colonization by organisms previously considered to be urine culture contaminants. Neither antimicrobial use nor catheter changes sterilized the urine, at most resulting in transient reductions in bacterial burden followed by new acquisition of resistant isolates. Thus, this patient population exhibits a high prevalence of bacteriuria coupled with potential indicators of infection, necessitating further exploration to identify sensitive markers of true infection.FUNDINGThis work was supported by the NIH (R00 DK105205, R01 DK123158, UL1 TR001412).


Assuntos
Infecções Assintomáticas/epidemiologia , Bacteriúria/epidemiologia , Infecções Relacionadas a Cateter/epidemiologia , Coinfecção/epidemiologia , Casas de Saúde , Cateteres Urinários , Adulto , Idoso , Idoso de 80 Anos ou mais , Bacteriúria/microbiologia , Infecções Relacionadas a Cateter/microbiologia , Cateteres de Demora , Coinfecção/microbiologia , Resistência Microbiana a Medicamentos , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Estudos Prospectivos
16.
BMC Microbiol ; 10: 162, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20515494

RESUMO

BACKGROUND: Nontypeable Haemophilus influenzae colonizes and infects the airways of adults with chronic obstructive pulmonary disease, the fourth most common cause of death worldwide.Thus, H. influenzae, an exclusively human pathogen, has adapted to survive in the hostile environment of the human airways.To characterize proteins expressed by H. influenzae in the airways, a prototype strain was grown in pooled human sputum to simulate conditions in the human respiratory tract.The proteins from whole bacterial cell lysates were solubilized with a strong buffer and then quantitatively cleaned with an optimized precipitation/on-pellet enzymatic digestion procedure.Proteomic profiling was accomplished by Nano-flow liquid chromatography/mass spectroscopy with low void volume and high separation efficiency with a shallow, long gradient. RESULTS: A total of 1402 proteins were identified with high confidence, including 170 proteins that were encoded by genes that are annotated as conserved hypothetical proteins.Thirty-one proteins were present in greater abundance in sputum-grown conditions at a ratio of > 1.5 compared to chemically defined media.These included 8 anti-oxidant and 5 stress-related proteins, suggesting that expression of antioxidant activity and stress responses is important for survival in the airways.Four proteins involved in uptake of divalent anions and 9 proteins that function in uptake of various molecules were present in greater abundance in sputum-grown conditions. CONCLUSIONS: Proteomic expression profiling of H. influenzae grown in pooled human sputum revealed increased expression of antioxidant, stress-response proteins and cofactor and nutrient uptake systems compared to media grown cells.These observations suggest that H. influenzae adapts to the oxidative and nutritionally limited conditions of the airways in adults with chronic obstructive pulmonary disease by increasing expression of molecules necessary for survival in these conditions.


Assuntos
Proteínas de Bactérias/análise , Haemophilus influenzae/química , Haemophilus influenzae/crescimento & desenvolvimento , Proteoma/análise , Doença Pulmonar Obstrutiva Crônica/imunologia , Escarro/imunologia , Adulto , Antioxidantes/metabolismo , Cromatografia Líquida , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/imunologia , Humanos , Espectrometria de Massas , Doença Pulmonar Obstrutiva Crônica/microbiologia , Escarro/microbiologia , Estresse Fisiológico
17.
J Infect Dis ; 200(12): 1928-35, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19919307

RESUMO

BACKGROUND: The role played by airway infections with Pseudomonas aeruginosa in the course and pathogenesis of chronic obstructive pulmonary disease (COPD) has not yet been resolved. We report on the molecular epidemiology and population biology of P. aeruginosa in COPD. METHODS: P. aeruginosa isolates collected from adults with COPD during a 10-year prospective study were genotyped in 56 binary marker loci of core and accessory genomes. RESULTS: The typing of 134 P. aeruginosa COPD isolates uncovered 60 unrelated bacterial clones. The worldwide dominant clones in the P. aeruginosa population were also the most abundant clones among the COPD isolates. Sporadic or intermittent infection with P. aeruginosa was typical for the airways of patients with COPD. Sequential isolates with the same genotype of the core genome diversified the composition of their accessory genome during the course of the infection. CONCLUSIONS: Intraclonal microevolution and the frequent turnover or loss of clones are typical for infections with P. aeruginosa in COPD. This epidemiological signature differs from that of the chronic carriage of the same P. aeruginosa clone in patients with cystic fibrosis.


Assuntos
Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/genética , Doença Pulmonar Obstrutiva Crônica/microbiologia , Adulto , Técnicas de Tipagem Bacteriana , Análise por Conglomerados , Impressões Digitais de DNA , DNA Bacteriano/genética , Feminino , Genes Bacterianos , Genótipo , Humanos , Masculino , Epidemiologia Molecular , Pseudomonas aeruginosa/isolamento & purificação , Adulto Jovem
18.
mSphere ; 5(3)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461277

RESUMO

Providencia stuartii is a common cause of polymicrobial catheter-associated urinary tract infection (CAUTI), and yet literature describing the molecular mechanisms of its pathogenesis is limited. To identify factors important for colonization during single-species infection and during polymicrobial infection with a common cocolonizer, Proteus mirabilis, we created a saturating library of ∼50,000 transposon mutants and conducted transposon insertion site sequencing (Tn-Seq) in a murine model of CAUTI. P. stuartii strain BE2467 carries 4,398 genes, 521 of which were identified as essential for growth in laboratory medium and therefore could not be assessed for contribution to infection. Using an input/output fold change cutoff value of 20 and P values of <0.05, 340 genes were identified as important for establishing single-species infection only and 63 genes as uniquely important for polymicrobial infection with P. mirabilis, and 168 genes contributed to both single-species and coinfection. Seven mutants were constructed for experimental validation of the primary screen that corresponded to flagella (fliC mutant), twin arginine translocation (tatC), an ATP-dependent protease (clpP), d-alanine-d-alanine ligase (ddlA), type 3 secretion (yscI and sopB), and type VI secretion (impJ). Infection-specific phenotypes validated 6/7 (86%) mutants during direct cochallenge with wild-type P. stuartii and 3/5 (60%) mutants during coinfection with P. mirabilis, for a combined validation rate of 9/12 (75%). Tn-Seq therefore successfully identified genes that contribute to fitness of P. stuartii within the urinary tract, determined the impact of coinfection on fitness requirements, and added to the identification of a collection of genes that may contribute to fitness of multiple urinary tract pathogens.IMPORTANCEProvidencia stuartii is a common cause of polymicrobial catheter-associated urinary tract infections (CAUTIs), particularly during long-term catheterization. However, little is known regarding the pathogenesis of this organism. Using transposon insertion site sequencing (Tn-Seq), we performed a global assessment of P. stuartii fitness factors for CAUTI while simultaneously determining how coinfection with another pathogen alters fitness requirements. This approach provides four important contributions to the field: (i) the first global estimation of P. stuartii genes essential for growth in laboratory medium, (ii) identification of novel fitness factors for P. stuartii colonization of the catheterized urinary tract, (iii) identification of core fitness factors for both single-species and polymicrobial CAUTI, and (iv) assessment of conservation of fitness factors between common uropathogens. Genomewide assessment of the fitness requirements for common uropathogens during single-species and polymicrobial CAUTI thus elucidates complex interactions that contribute to disease severity and will uncover conserved targets for therapeutic intervention.


Assuntos
Infecções Relacionadas a Cateter/microbiologia , Coinfecção/microbiologia , Elementos de DNA Transponíveis , Aptidão Genética , Providencia/genética , Infecções Urinárias/microbiologia , Animais , Coinfecção/complicações , Infecções por Enterobacteriaceae/etiologia , Infecções por Enterobacteriaceae/microbiologia , Feminino , Genoma Bacteriano , Camundongos , Camundongos Endogâmicos CBA , Fenótipo , Proteus mirabilis/genética , Proteus mirabilis/fisiologia , Providencia/fisiologia , Análise de Sequência de DNA , Infecções Urinárias/etiologia
19.
Pathogens ; 9(10)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066191

RESUMO

Indwelling urinary catheters are common in health care settings and can lead to catheter-associated urinary tract infection (CAUTI). Long-term catheterization causes polymicrobial colonization of the catheter and urine, for which the clinical significance is poorly understood. Through prospective assessment of catheter urine colonization, we identified Enterococcus faecalis and Proteus mirabilis as the most prevalent and persistent co-colonizers. Clinical isolates of both species successfully co-colonized in a murine model of CAUTI, and they were observed to co-localize on catheter biofilms during infection. We further demonstrate that P. mirabilis preferentially adheres to E. faecalis during biofilm formation, and that contact-dependent interactions between E. faecalis and P. mirabilis facilitate establishment of a robust biofilm architecture that enhances antimicrobial resistance for both species. E. faecalis may therefore act as a pioneer species on urinary catheters, establishing an ideal surface for persistent colonization by more traditional pathogens such as P. mirabilis.

20.
Am J Respir Crit Care Med ; 177(8): 853-60, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18202344

RESUMO

RATIONALE: Pseudomonas aeruginosa is isolated from adults with chronic obstructive pulmonary disease (COPD) in cross-sectional studies. However, patterns of carriage and the role of P. aeruginosa in COPD are unknown. OBJECTIVES: To elucidate carriage patterns, phenotypes of strains, clinical manifestations, and the antibody response to P. aeruginosa in COPD. METHODS: A prospective study of adults with COPD was conducted. Isolates of P. aeruginosa were subjected to genotypic and phenotypic analysis. Sputum samples were studied for P. aeruginosa DNA, and immune responses were assayed. MEASUREMENTS AND MAIN RESULTS: We analyzed longitudinal clinical data, sputum cultures, pulsed-field gel electrophoresis of bacterial DNA, polymerase chain reaction of sputum, and immunoblot assays of serum. Fifty-seven episodes of acquisition of strains of P. aeruginosa were observed in 39 of 126 patients over 10 years. Acquisition of a new strain was associated with exacerbation. Thirty-one episodes of carriage were followed by clearance of the strain; 16 were of short (<1 mo) duration. Thirteen strains demonstrated persistence, and 13 strains were of indeterminate duration. Six strains were mucoid and were more likely to persist than nonmucoid strains (P = 0.005). Antibody responses developed in 53.8% of persistent carriage and in only 9.7% of short-term carriage episodes (P = 0.003). Antibiotics did not account for clearance. CONCLUSIONS: Two distinct patterns of carriage by P. aeruginosa were observed: (1) short-term colonization followed by clearance and (2) long-term persistence. Mucoid strains showed persistence. Acquisition of P. aeruginosa is associated with the occurrence of an exacerbation. Serum antibody responses do not mediate clearance of P. aeruginosa.


Assuntos
Portador Sadio/microbiologia , Infecções por Pseudomonas/fisiopatologia , Pseudomonas aeruginosa/patogenicidade , Doença Pulmonar Obstrutiva Crônica/microbiologia , Escarro/microbiologia , Idoso , Portador Sadio/imunologia , Eletroforese em Gel de Campo Pulsado , Genótipo , Hospitais de Veteranos , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Fenótipo , Infecções por Pseudomonas/classificação , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/imunologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA