Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Antimicrob Agents ; 59(3): 106542, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35093538

RESUMO

A key element for the prevention and management of coronavirus disease 2019 is the development of effective therapeutics. Drug combination strategies offer several advantages over monotherapies. They have the potential to achieve greater efficacy, to increase the therapeutic index of drugs and to reduce the emergence of drug resistance. We assessed the in vitro synergistic interaction between remdesivir and ivermectin, both approved by the US Food and Drug Administration, and demonstrated enhanced antiviral activity against severe acute respiratory syndrome coronavirus-2. Whilst the in vitro synergistic activity reported here does not support the clinical application of this combination treatment strategy due to insufficient exposure of ivermectin in vivo, the data do warrant further investigation. Efforts to define the mechanisms underpinning the observed synergistic action could lead to the development of novel treatment strategies.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/farmacologia , Antivirais/uso terapêutico , Humanos , Ivermectina/farmacologia , Ivermectina/uso terapêutico
2.
Cancer Rep (Hoboken) ; 2(4): e1155, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-32721126

RESUMO

BACKGROUND: The benzothiazole structure is important in medicinal chemistry, and 5-fluoro-2-(3,4-dimethoxyphenyl) benzothiazole (GW 610) is of particular interest as it shows outstanding anticancer activity in sensitive breast and colorectal carcinoma cell lines via generation of lethal DNA adducts in sensitive cancer cells. Despite promising activity, poor water solubility limits its applications. The apoferritin (AFt) protein cage has been proposed as a robust and biocompatible drug delivery vehicle. AIMS: Here, we aim to enhance solubility of GW 610 by developing amino acid prodrug conjugates and utilizing the AFt capsule as drug delivery vessel. METHODS AND RESULTS: The potent experimental antitumour agent, GW 610, has been successfully encapsulated within AFt with more than 190 molecules per AFt cage. The AFt-GW 610 complex exhibits dose-dependent growth inhibition and is more potent than GW 610 alone in 5/7 cancer cell lines. To enhance both aqueous solubility and encapsulation efficiency, a series of amino acid esters of GW 608 prodrug were synthesized via N,N'-dicyclohexylcarbodiimide ester coupling to produce molecules with different polarity. A dramatic increase in encapsulation efficiency was achieved, with more than 380 molecules of GW 608-Lys molecules per AFt cage. Release studies show sustained release of the cargo over 12 hours at physiologically relevant pH. The AFt-encapsulated amino acid modified GW 608 complexes are sequestered more rapidly and exhibit more potent anticancer activity than unencapsulated agent. CONCLUSION: These results indicate that AFt-encapsulation of GW 610 prodrug provides a biocompatible delivery option for this potent, selective experimental antitumour agent and for amino acid-modified GW 608. Of particular interest is the encapsulation efficiency and in vitro antitumour activity of AFt-GW 608-Lys, which warrants further preclinical evaluation.


Assuntos
Apoferritinas/química , Benzotiazóis/administração & dosagem , Portadores de Fármacos/química , Benzotiazóis/química , Linhagem Celular Tumoral , Adutos de DNA/efeitos dos fármacos , Composição de Medicamentos/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Solubilidade , Água/química
3.
Int J Nanomedicine ; 14: 9525-9534, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824148

RESUMO

INTRODUCTION: Advancement of novel anticancer drugs into clinical use is frequently halted by their lack of solubility, reduced stability under physiological conditions, and non-specific uptake by normal tissues, causing systemic toxicity. Their progress to use in the clinic could be accelerated by the development of new formulations employing suitable and complementary drug delivery vehicles. METHODS: A robust method for apoferritin (AFt)-encapsulation of antitumour benzothiazoles has been developed for enhanced activity against and drug delivery to benzothiazole-sensitive cancers. RESULTS: More than 70 molecules of benzothiazole 5F 203 were encapsulated per AFt cage. Post-encapsulation, the size and integrity of the protein cages were retained as evidenced by dynamic light scattering. ToF-SIMS depth profiling using an argon cluster beam confirmed 5F 203 exclusively within the AFt cavity. Improved encapsulation of benzothiazole lysyl-amide prodrugs was achieved (~130 molecules of Phortress per AFt cage). Transferrin receptor 1, TfR1, was detected in lysates prepared from most cancer cell lines studied, contributing to enhanced anticancer potency of the AFt-encapsulated benzothiazoles (5F 203, Phortress, GW 610, GW 608-Lys). Nanomolar activity was demonstrated by AFt-formulations in breast, ovarian, renal and gastric carcinoma cell lines, whereas GI50 >50 µM was observed in non-tumourigenic MRC-5 fibroblasts. Intracellular 5F 203, a potent aryl hydrocarbon receptor (AhR) ligand, and inducible expression of cytochrome P450 (CYP) 1A1 were detected following exposure of sensitive cells to AFt-5F 203, confirming that the activity of benzothiazoles was not compromised following encapsulation. CONCLUSION: Our results show enhanced potency and selectivity of AFt-encapsulated 5F 203 against carcinomas derived from breast, ovarian, renal, colorectal as well as gastric cancer models, and offer realistic prospects for potential refinement of tumour-targeting and treatment, and merit further in vivo investigations.


Assuntos
Antineoplásicos/farmacologia , Apoferritinas/metabolismo , Sistemas de Liberação de Medicamentos , Tiazóis/farmacologia , Linhagem Celular Tumoral , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Humanos , Receptores de Hidrocarboneto Arílico/metabolismo , Tiazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA