Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 196(7): 3159-67, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26927796

RESUMO

In the process of seeking novel lung host defense regulators by analyzing genome-wide RNA sequence data from normal human airway epithelium, we detected expression of POU domain class 2-associating factor 1 (POU2AF1), a known transcription cofactor previously thought to be expressed only in lymphocytes. Lymphocyte contamination of human airway epithelial samples obtained by bronchoscopy and brushing was excluded by immunohistochemistry staining, the observation of upregulation of POU2AF1 in purified airway basal stem/progenitor cells undergoing differentiation, and analysis of differentiating single basal cell clones. Lentivirus-mediated upregulation of POU2AF1 in airway basal cells induced upregulation of host defense genes, including MX1, IFIT3, IFITM, and known POU2AF1 downstream genes HLA-DRA, ID2, ID3, IL6, and BCL6. Interestingly, expression of these genes paralleled changes of POU2AF1 expression during airway epithelium differentiation in vitro, suggesting POU2AF1 helps to maintain a host defense tone even in pathogen-free condition. Cigarette smoke, a known risk factor for airway infection, suppressed POU2AF1 expression both in vivo in humans and in vitro in human airway epithelial cultures, accompanied by deregulation of POU2AF1 downstream genes. Finally, enhancing POU2AF1 expression in human airway epithelium attenuated the suppression of host defense genes by smoking. Together, these findings suggest a novel function of POU2AF1 as a potential regulator of host defense genes in the human airway epithelium.


Assuntos
Regulação da Expressão Gênica , Imunidade/genética , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Transativadores/genética , Transativadores/metabolismo , Diferenciação Celular , Análise por Conglomerados , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Humanos , Mucosa Respiratória/citologia , Fumar/efeitos adversos
2.
Proc Natl Acad Sci U S A ; 110(29): 12102-7, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23818594

RESUMO

The airway epithelium of smokers acquires pathological phenotypes, including basal cell (BC) and/or goblet cell hyperplasia, squamous metaplasia, structural and functional abnormalities of ciliated cells, decreased number of secretoglobin (SCGB1A1)-expressing secretory cells, and a disordered junctional barrier. In this study, we hypothesized that smoking alters airway epithelial structure through modification of BC function via an EGF receptor (EGFR)-mediated mechanism. Analysis of the airway epithelium revealed that EGFR is enriched in airway BCs, whereas its ligand EGF is induced by smoking in ciliated cells. Exposure of BCs to EGF shifted the BC differentiation program toward the squamous and epithelial-mesenchymal transition-like phenotypes with down-regulation of genes related to ciliogenesis, secretory differentiation, and markedly reduced junctional barrier integrity, mimicking the abnormalities present in the airways of smokers in vivo. These data suggest that activation of EGFR in airway BCs by smoking-induced EGF represents a unique mechanism whereby smoking can alter airway epithelial differentiation and barrier function.


Assuntos
Diferenciação Celular/fisiologia , Fator de Crescimento Epidérmico/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Receptores ErbB/metabolismo , Mucosa Respiratória/patologia , Fumar/efeitos adversos , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Imunofluorescência , Humanos , Imuno-Histoquímica , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
Am J Respir Cell Mol Biol ; 51(5): 688-700, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24828273

RESUMO

Airway epithelium ciliated cells play a central role in clearing the lung of inhaled pathogens and xenobiotics, and cilia length and coordinated beating are important for airway clearance. Based on in vivo studies showing that the airway epithelium of healthy smokers has shorter cilia than that of healthy nonsmokers, we investigated the mechanisms involved in cigarette smoke-mediated inhibition of ciliogenesis by assessing normal human airway basal cell differentiation in air-liquid interface (ALI) cultures in the presence of nontoxic concentrations of cigarette smoke extract (CSE). Measurements of cilia length from Day 28 ALI cultures demonstrated that CSE exposure was associated with shorter cilia (P < 0.05), reproducing the effect of cigarette smoking on cilia length observed in vivo. This phenotype correlated with a broad CSE-mediated suppression of genes involved in cilia-related transcriptional regulation, intraflagellar transport, cilia motility, structural integrity, and basal body development but not of control genes or epithelial barrier integrity. The CSE-mediated inhibition of cilia growth could be prevented by lentivirus-mediated overexpression of FOXJ1, the major cilia-related transcription factor, which led to partial reversal of expression of cilia-related genes suppressed by CSE. Together, the data suggest that components of cigarette smoke are responsible for a broad suppression of genes involved in cilia growth, but, by stimulating ciliogenesis with the transcription factor FOXJ1, it may be possible to maintain close to normal cilia length despite the stress of cigarette smoking.


Assuntos
Cílios/fisiologia , Fatores de Transcrição Forkhead/fisiologia , Mucosa Respiratória/citologia , Fumar/efeitos adversos , Fumar/fisiopatologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Fumar/genética , Transcrição Gênica/fisiologia
4.
Breast Cancer Res ; 13(1): R3, 2011 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-21223569

RESUMO

INTRODUCTION: Estrogen receptor positive breast cancers often have high levels of Mdm2. We investigated if estrogen signaling in such breast cancers occurred through an Mdm2 mediated pathway with subsequent inactivation of p53. METHODS: We examined the effect of long-term 17ß-estradiol (E2) treatment (five days) on the p53-Mdm2 pathway in estrogen receptor alpha (ERα) positive breast cancer cell lines that contain wild-type p53 (MCF-7 and ZR75-1). We assessed the influence of estrogen by examining cell proliferation changes, activation of transcription of p53 target genes, p53-chromatin interactions and cell cycle profile changes. To determine the effects of Mdm2 and p53 knockdown on the estrogen-mediated proliferation signals we generated MCF-7 cell lines with inducible shRNA for mdm2 or p53 and monitored their influence on estrogen-mediated outcomes. To further address the p53-independent effect of Mdm2 in ERα positive breast cancer we generated cell lines with inducible shRNA to mdm2 using the mutant p53 expressing cell line T-47D. RESULTS: Estrogen increased the Mdm2 protein level in MCF-7 cells without decreasing the p53 protein level. After estrogen treatment of MCF-7 cells, down-regulation of basal transcription of p53 target genes puma and p21 was observed. Estrogen treatment also down-regulated etoposide activated transcription of puma, but not p21. Mdm2 knockdown in MCF-7 cells increased p21 mRNA and protein, decreased cell growth in 3D matrigel and also decreased estrogen-induced cell proliferation in 2D culture. In contrast, knockdown of p53 had no effect on estrogen-induced cell proliferation. In T-47D cells with mutant p53, the knockdown of Mdm2 decreased estrogen-mediated cell proliferation but did not increase p21 protein. CONCLUSIONS: Estrogen-induced breast cancer cell proliferation required a p53-independent role of Mdm2. The combined influence of genetic and environmental factors on the tumor promoting effects of estrogen implicated Mdm2 as a strong contributor to the bypass of cell cycle checkpoints. The novel finding that p53 was not the key target of Mdm2 in the estrogen activation of cell proliferation could have great benefit for future Mdm2-targeted breast cancer therapies.


Assuntos
Neoplasias da Mama/metabolismo , Estradiol/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Cromatina/metabolismo , Feminino , Inativação Gênica , Humanos , Transporte Proteico , Proteínas Proto-Oncogênicas c-mdm2/genética , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/genética
5.
Chem Res Toxicol ; 23(7): 1151-62, 2010 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-20536192

RESUMO

The mitomycin derivative 10-decarbamoyl mitomycin C (DMC) more rapidly activates a p53-independent cell death pathway than mitomycin C (MC). We recently documented that an increased proportion of mitosene1-beta-adduct formation occurs in human cells treated with DMC in comparison to those treated with MC. Here, we compare the cellular and molecular response of human cancer cells treated with MC and DMC. We find the increase in mitosene 1-beta-adduct formation correlates with a condensed nuclear morphology and increased cytotoxicity in human cancer cells with or without p53. DMC caused more DNA damage than MC in the nuclear and mitochondrial genomes. Checkpoint 1 protein (Chk1) was depleted following DMC, and the depletion of Chk1 by DMC was achieved through the ubiquitin proteasome pathway since chemical inhibition of the proteasome protected against Chk1 depletion. Gene silencing of Chk1 by siRNA increased the cytotoxicity of MC. DMC treatment caused a decrease in the level of total ubiquitinated proteins without increasing proteasome activity, suggesting that DMC mediated DNA adducts facilitate signal transduction to a pathway targeting cellular proteins for proteolysis. Thus, the mitosene-1-beta stereoisomeric DNA adducts produced by the DMC signal for a p53-independent mode of cell death correlated with reduced nuclear size, persistent DNA damage, increased ubiquitin proteolysis and reduced Chk1 protein.


Assuntos
Adutos de DNA/química , Mitomicinas/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Dano ao DNA , Inativação Gênica , Humanos , Mitomicina/toxicidade , Mitomicinas/toxicidade , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/genética
6.
Ethn Dis ; 18(2 Suppl 2): S2-1-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18646312

RESUMO

INTRODUCTION: Mdm2 inhibits p53 transactivation by forming a p53-Mdm2 complex on chromatin. Upon DNA damage-induced complex disruption, such latent p53 can be activated, but in cells overexpressing Mdm2 because of a homozygous single nucleotide polymorphism at position 309 (T --> G) of mdm2, the complex is highly stable and cannot be disrupted by DNA damage, rendering p53 inactive. METHODS: To determine whether the p53 response phenotype is influenced differentially in cells with variable mdm2 genotypes, we compared responses to DNA damage and targeted p53-Mdm2 complex disruption by Nutlin-3 in the following wild-type p53 human cancer cell lines: A875 and CCF-STTG-1 (G/G for mdm2 SNP309), SJSA-1 (mdm2 genomic amplification and T/T for mdm2 SNP309), MCF-7 (estrogen-induced Mdm2 overexpression and T/G for mdm2 SNP309), ML-1 and H460 (T/T for mdm2 SNP309), and K562 (p53-null and T/G for mdm2 SNP309). We also examined mdm2 gene-splicing patterns in these lines by cloning and sequencing analyses. RESULTS: While Mdm2-overexpressing G/G cells were resistant to p53 activation by DNA damage, they were sensitive to Nutlin-3. Strikingly, the p53 G1 checkpoint in G/G cells was activated by Nutlin-3 but not by etoposide, whereas in other Mdm2-overexpressing cells, both drugs activated p53 and subsequent G1 arrest or apoptosis. cDNA clones lacking exons 5-9 were generated at a high frequency in cells overexpressing Mdm2. CONCLUSION: Nutlin-3 and DNA damage distinguish a differential phenotype in human cancer cells with G/G mdm2 SNP309 from other Mdm2 overexpressers. Categorization of the Mdm2 isoforms produced and their influence on p53 activity will help in characterization and treatment development for different cancers.


Assuntos
Imidazóis/farmacologia , Neoplasias/metabolismo , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Clonagem Molecular , Dano ao DNA , Etoposídeo/farmacologia , Citometria de Fluxo , Genótipo , Humanos , Fenótipo , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Oncotarget ; 8(29): 47916-47930, 2017 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-28615518

RESUMO

The Cancer Genome Atlas (TCGA) data indicate that high MDM2 expression correlates with all subtypes of breast cancer. Overexpression of MDM2 drives breast oncogenesis in the presence of wild-type or mutant p53 (mtp53). Importantly, estrogen-receptor positive (ER+) breast cancers overexpress MDM2 and estrogen mediates this expression. We previously demonstrated that this estrogen-MDM2 axis activates the proliferation of breast cancer cell lines T47D (mtp53 L194F) and MCF7 (wild-type p53) in a manner independent of increased degradation of wild-type p53 (ie, p53-independently). Herein we present data supporting the role of the estrogen-MDM2 axis in regulating cell proliferation and mammary tissue architecture of MCF7 and T47D cells in a p53-independent manner. Inducible shRNA mediated MDM2 knockdown inhibited colony formation in soft agar, decreased mass size and induced lumen formation in matrigel and also significantly reduced mitosis as seen by decreased phospho-histone H3 positive cells. The knockdown of MDM2 in both cell lines decreased Rb phosphorylation and the level of E2F1 protein. This signaling was through the estrogen receptor because fulvestrant (a selective estrogen receptor degrader) decreased MDM2 protein levels and decreased phosphorylation of Rb. Taken together these data indicate that in some ER+ breast cancers the estrogen-MDM2-Rb-E2F1 axis is a central hub for estrogen-mediated p53-independent signal transduction. This is the first indication that estrogen signaling utilizes the estrogen-MDM2 axis to provoke phosphorylation of Rb and increase E2F1 while promoting abnormal mammary architecture.


Assuntos
Neoplasias da Mama/metabolismo , Estrogênios/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Fator de Transcrição E2F1/metabolismo , Estradiol/análogos & derivados , Estradiol/farmacologia , Feminino , Fulvestranto , Técnicas de Silenciamento de Genes , Humanos , Mitose/efeitos dos fármacos , Mitose/genética , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína do Retinoblastoma/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Bioorg Med Chem Lett ; 16(11): 2846-9, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16580203

RESUMO

A screening methodology called 'genomic screening' was established to identify natural products that can regulate cellular gene expression. Application of genomic screening to Keishi-bukuryo-gan (KBG), a Japanese herbal medicine formulation, identified a previously unnoticed transcriptional effect by linoleic acid, a known KBG component. The approach opens up a possibility to develop cell-permeable molecular tools for functional genomics research and sets a stage to evaluate the potential of natural products for transcription therapies.


Assuntos
Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Genoma/genética , Produtos Biológicos/química , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Estrutura Molecular , Espectrometria de Massas por Ionização por Electrospray , Cordão Umbilical/efeitos dos fármacos , Cordão Umbilical/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA