Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38932095

RESUMO

In this study, a flash pyrolysis process is developed using an entrained flow reactor for recycling of waste tires. The flash pyrolysis system is tested for process stability and reproducibility of the products under similar operating conditions when operated continuously. The study is performed with two different feedstock materials, i.e., passenger car (PCT) and truck tire (TT) granulates, to understand the influence of feedstock on the yield and properties of the pyrolysis products. The different pyrolytic products i.e., pyrolytic carbon black (pCB), oil, and pyro-gas, are analyzed, and their key properties are discussed. The potential applications for the obtained pyrolytic products are discussed. Finally, a mass and energy balance analysis has been performed for the developed pyrolysis process. The study provides insight into the governing mechanisms of the flash pyrolysis process for waste tires, which is useful to optimize the process depending on the desired applications for the pyrolysis products, and also to scale up the pyrolysis process.

2.
Environ Sci Technol ; 45(6): 2450-6, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21344896

RESUMO

Chromium speciation is vital for the toxicity of products resulting from co-combustion of coal and biomass. Therefore, understanding of formation processes has been studied using a combination of X-ray absorption fine structure (XAFS) spectroscopy and thermodynamic equilibrium calculations. The influence of cofiring on Cr speciation is very dependent on the type of fuel. Cr(VI) contents in the investigated fly ash samples from coal and cofiring average around 7% of the total chromium. An exception is cofiring 7-28% wood for which ashes exhibited Cr(VI) concentrations of 12-16% of the total chromium. Measurements are in line with thermodynamic predictions: RE factors of Cr around 1 are in line with volatile Cr only above 1400 °C; lower Cr(VI) concentrations with lower oxygen content and Cr(III) dissolved in aluminosilicate glass. Stability of Cr(VI) below 700 °C does not correlate with Cr(VI) concentrations found in the combustion products. It is indicated that Cr(VI) formation is a high-temperature process dependent on Cr evaporation (mode of occurrence in fuel, promoted by organic association), oxidation (local oxygen content), and formation of solid chromates (promoted by presence of free lime (CaO) in the ash). CaCrO(4)(s) is a probable chemical form but, given different leachable fractions (varying from 25 to 100%), different forms of Cr(VI) must be present. Clay-bound Cr is likely to dissolve in the aluminosilicate glass phase during melting of the clay.


Assuntos
Carbono/análise , Cromo/análise , Carvão Mineral/análise , Substâncias Perigosas/análise , Material Particulado/análise , Oligoelementos/análise , Biomassa , Carbono/química , Cromo/química , Cinza de Carvão , Material Particulado/química , Centrais Elétricas , Oligoelementos/química , Espectroscopia por Absorção de Raios X
3.
iScience ; 24(8): 102843, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34401658

RESUMO

Solid-state thermal control devices that present an asymmetric heat flow depending on thermal bias directionality, referred to as thermal diodes, have recently received increased attention for energy management. The use of materials that can change phase is a common approach to design thermal diodes, but typical sizes, moderate rectification ratios, and narrow thermal tunability limit their potential applications. In this work, we propose a multilayer thermal diode made of a combination of phase change and invariant materials. This device presents state-of-the-art thermal rectification ratios up to 136% for a temperature range between 300 K and 500 K. Importantly, this design allows to switch between distinct rectification states that can be modulated with temperature, achieving an additional degree of thermal control compared with single-rectification-state devices. We analyze the relevance of our thermal diodes for retaining heat more efficiently in thermal storage elements.

4.
Ind Eng Chem Res ; 57(10): 3628-3638, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30022804

RESUMO

Potassium carbonate is a highly hygroscopic salt, and this aspect becomes important for CO2 capture from ambient air. Moreover, CO2 capture from ambient air requires adsorbents with a very low pressure drop. In the present work an activated carbon honeycomb monolith was coated with K2CO3, and it was treated with moist N2 to hydrate it. Its CO2 capture capacity was studied as a function of the temperature, the water content of the air, and the air flow rate, following a factorial design of experiments. It was found that the water vapor content in the air had the largest influence on the CO2 adsorption capacity. Moreover, the deliquescent character of K2CO3 led to the formation of an aqueous solution in the pores of the carrier, which regulated the temperature of the CO2 adsorption. The transition between the anhydrous and the hydrated forms of potassium carbonate was studied by means of FT-IR spectroscopy. It can be concluded that hydrated potassium carbonate is a promising and cheap alternative for CO2 capture from ambient air for the production of CO2-enriched air or for the synthesis of solar fuels, such as methanol.

5.
Waste Manag ; 34(1): 49-62, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24125795

RESUMO

Waste combustion on a grate with energy recovery is an important pillar of municipal solid waste (MSW) management in the Netherlands. In MSW incinerators fresh waste stacked on a grate enters the combustion chamber, heats up by radiation from the flame above the layer and ignition occurs. Typically, the reaction zone starts at the top of the waste layer and propagates downwards, producing heat for drying and devolatilization of the fresh waste below it until the ignition front reaches the grate. The control of this process is mainly based on empiricism. MSW is a highly inhomogeneous fuel with continuous fluctuating moisture content, heating value and chemical composition. The resulting process fluctuations may cause process control difficulties, fouling and corrosion issues, extra maintenance, and unplanned stops. In the new concept the fuel layer is ignited by means of preheated air (T>220 °C) from below without any external ignition source. As a result a combustion front will be formed close to the grate and will propagate upwards. That is why this approach is denoted by upward combustion. Experimental research has been carried out in a batch reactor with height of 4.55 m, an inner diameter of 200 mm and a fuel layer height up to 1m. Due to a high quality two-layer insulation adiabatic conditions can be assumed. The primary air can be preheated up to 350 °C, and the secondary air is distributed via nozzles above the waste layer. During the experiments, temperatures along the height of the reactor, gas composition and total weight decrease are continuously monitored. The influence of the primary air speed, fuel moisture and inert content on the combustion characteristics (ignition rate, combustion rate, ignition front speed and temperature of the reaction zone) is evaluated. The upward combustion concept decouples the drying, devolatilization and burnout phase. In this way the moisture and inert content of the waste have almost no influence on the combustion process. In this paper an experimental comparison between conventional and reversed combustion is presented.


Assuntos
Incineração/instrumentação , Incineração/métodos , Resíduos Sólidos , Madeira/química , Ar , Desenho de Equipamento , Países Baixos , Oxigênio , Temperatura
6.
Waste Manag ; 32(9): 1659-68, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22595838

RESUMO

To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of the used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained.


Assuntos
Incineração , Modelos Teóricos , Polimetil Metacrilato , Cloreto de Polivinila , Madeira , Incêndios , Temperatura Alta , Pinus
7.
Waste Manag ; 31(2): 259-66, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20675114

RESUMO

The influence of the co-combustion of household waste with either sewage sludge, shredder fluff, electronic and electrical waste (WEEE) or PVC on the bottom ash quality and content was investigated under controlled laboratory conditions using a pot furnace. This laboratory approach avoids the interpretation problems related to large variations in input waste composition and combustion conditions that are observed in large scale MSW incinerators. The data for metals content, transfer coefficients and leaching values are presented relative to data for a base household waste composition that did not contain any of the added special wastes. The small WEEE invited direct measurement of precious metals content in the ashes, where measurement accuracy is facilitated by using only mobile phone scrap for small WEEE. The analyses were carried out for different particle size ranges that are of relevance to the recyclability of metals and minerals in the ashes. Positive correlations were found between elements content of the input waste and the bottom ashes, and also between increased levels of Cl, Mo and Cu in the input waste and their leaching in the bottom ashes. These correlations indicate that addition of PVC, small WEEE and shredder fluff in input waste can have a negative influence on the quality of the bottom ashes. Enrichment of Au and Ag occurred in the fractions between 0.15 and 6 mm. The precious metals content represents an economically interesting intrinsic value, even when the observed peak values are properly averaged over a larger volume of ashes. Overall, it has been shown that changes in quality and content of bottom ashes may be traced back to the varied input waste composition.


Assuntos
Resíduo Eletrônico/análise , Utensílios Domésticos , Incineração , Resíduos Industriais/análise , Cloreto de Polivinila/análise , Esgotos/análise , Resíduos/análise , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Metais/análise , Tamanho da Partícula
8.
Bioresour Technol ; 102(8): 5113-22, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21334889

RESUMO

In this study, the energy balance of two microalgae-to-biofuel concepts, one via a so called "dry route" (oil extraction from dried algae) and one via a "wet route" (oil extraction in the water phase), are assessed. Both routes are intended to convert the chemical energy contained in the microalgae into high-value biofuels with minimal fossil energy consumption. The analysis shows that the drying process in the dry route and the oil extraction process in the wet route consume a significant amount of energy. By coupling waste heat from a nearby power plant to the process, the energy balance can be improved and a potential fossil energy ratio (FER) up to 2.38 and 1.82 can be reached for the dry and wet route, respectively. The results indicate that based on current available technologies, the dry route has higher FER and the wet route has more potential in producing high valuable biofuels.


Assuntos
Biocombustíveis , Microalgas/metabolismo , Esterificação , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA