Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proteins ; 80(4): 1041-52, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22213585

RESUMO

In this study, we report the effects of acidic to basic residue point mutations (5K) on the dipole moment of RNAse SA at different pHs. Dipole moments were determined by measuring solution capacitance of the wild type (WT) and the 5K mutant with an impedance analyzer. The dipole moments were then (1) compared with theoretically calculated dipole moments, (2) analyzed to determine the effect of the point mutations, and (3) analyzed for their contribution to overall protein-protein interactions (PPI) in solution as quantitated by experimentally derived second virial coefficients. We determined that experimental and calculated dipoles were in reasonable agreement. Differences are likely due to local motions of residue side chains, which are not accounted for by the calculated dipole. We observed that the proteins' dipole moments increase as the pH is shifted further from their isoelectric points and that the wild-type dipole moments were greater than those of the 5K. This is likely due to an increase in the proportion of one charge (either negative or positive) relative to the other. A greater charge disparity corresponded to a larger dipole moment. Finally, the larger dipole moments of the WT resulted in greater attractive overall PPI for that protein as compared to the 5K.


Assuntos
Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Ribonucleases/química , Eletricidade Estática , Capacitância Elétrica , Concentração de Íons de Hidrogênio , Lisina/química , Concentração Osmolar , Mutação Puntual , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Ribonucleases/genética , Solubilidade , Soluções/química
2.
Biophys J ; 99(8): 2657-65, 2010 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20959107

RESUMO

The concentration-dependence of the diffusion and sedimentation coefficients (k(D) and k(s), respectively) of a protein can be used to determine the second virial coefficient (B2), a parameter valuable in predicting protein-protein interactions. Accurate measurement of B2 under physiologically and pharmaceutically relevant conditions, however, requires independent measurement of k(D) and k(s) via orthogonal techniques. We demonstrate this by utilizing sedimentation velocity (SV) and dynamic light scattering (DLS) to analyze solutions of hen-egg white lysozyme (HEWL) and a monoclonal antibody (mAb1) in different salt solutions. The accuracy of the SV-DLS method was established by comparing measured and literature B2 values for HEWL. In contrast to the assumptions necessary for determining k(D) and k(s) via SV alone, k(D) and ks were of comparable magnitudes, and solution conditions were noted for both HEWL and mAb1 under which 1), k(D) and k(s) assumed opposite signs; and 2), k(D) ≥k(s). Further, we demonstrate the utility of k(D) and k(s) as qualitative predictors of protein aggregation through agitation and accelerated stability studies. Aggregation of mAb1 correlated well with B2, k(D), and k(s), thus establishing the potential for k(D) to serve as a high-throughput predictor of protein aggregation.


Assuntos
Difusão , Multimerização Proteica , Proteínas/química , Proteínas/metabolismo , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Temperatura Alta , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Movimento (Física) , Muramidase/química , Muramidase/metabolismo , Estabilidade Proteica , Estrutura Quaternária de Proteína
3.
Anal Biochem ; 399(1): 141-3, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19995543

RESUMO

We propose a new method to measure the viscosity of concentrated protein solutions in a high-throughput format. This method measures the apparent hydrodynamic radius of polystyrene beads with known sizes using a dynamic light scattering (DLS) system with a microplate reader. Glycerol solution viscosities obtained by the DLS method were in good agreement with those reported in the literature. Viscosity of the solutions of two monoclonal antibody molecules was acquired using both DLS and cone-and-plate techniques, and the results were comparable. The DLS method described here has the potential to be used in many aspects of protein characterization.


Assuntos
Luz , Proteínas/química , Espalhamento de Radiação , Animais , Imunoglobulina G/química , Camundongos , Poliestirenos/química , Soluções , Viscosidade
4.
Biochemistry ; 48(46): 10934-47, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19839644

RESUMO

Conformational properties of the folded and unfolded ensembles of human interleukin-1 receptor antagonist (IL-1ra) are strongly denaturant-dependent as evidenced by high-resolution two-dimensional nuclear magnetic resonance (NMR), limited proteolysis, and small-angle X-ray scattering (SAXS). The folded ensemble was characterized in detail in the presence of different urea concentrations by (1)H-(15)N HSQC NMR. The beta-trefoil fold characteristic of native IL-1ra was preserved until the unfolding transition region beginning at 4 M urea. At the same time, a subset of native resonances disappeared gradually starting at low denaturant concentrations, indicating noncooperative changes in the folded state. Additional evidence of structural perturbations came from the chemical shift analysis, nonuniform and bell-shaped peak intensity profiles, and limited proteolysis. In particular, the following nearby regions of the tertiary structure became progressively destabilized with increasing urea concentrations: the beta-hairpin interface of trefoils 1 and 2 and the H2a-H2 helical region. These regions underwent small-scale perturbations within the native baseline region in the absence of populated molten globule-like states. Similar regions were affected by elevated temperatures known to induce irreversible aggregation of IL-1ra. Further evidence of structural transitions invoking near-native conformations came from an optical spectroscopy analysis of its single-tryptophan variant W17A. The increase in the radius of gyration was associated with a single equilibrium unfolding transition in the case of two different denaturants, urea and guanidine hydrochloride (GuHCl). However, the compactness of urea- and GuHCl-unfolded molecules was comparable only at high denaturant concentrations and deviated under less denaturing conditions. Our results identified the role of conformational flexibility in IL-1ra aggregation and shed light on the nature of structural transitions within the folded ensembles of other beta-trefoil proteins, such as IL-1beta and hFGF-1.


Assuntos
Proteína Antagonista do Receptor de Interleucina 1/química , Dicroísmo Circular , Endopeptidase K/química , Polarização de Fluorescência , Guanidina/química , Humanos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Desnaturação Proteica , Proteínas Recombinantes/química , Espalhamento de Radiação , Espectrometria de Fluorescência , Termodinâmica , Ureia/química , Raios X
5.
Anal Biochem ; 392(1): 12-21, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19457431

RESUMO

Trypsin digestion can induce artificial modifications such as asparagine deamidation and N-terminal glutamine cyclization on proteins due to the temperature and the alkaline pH buffers used during digestion. The amount of these artificial modifications is directly proportional to the incubation time of protein samples in the reduction/alkylation buffer and, more important, in the digestion buffer where the peptides are completely solvent exposed. To minimize these artificial modifications, we focused on minimizing the trypsin digestion time by maximizing trypsin activity. Trypsin activity was optimized by the complete removal of guanidine, which is a known trypsin inhibitor, from the digestion buffer. As a result, near complete trypsin digestion was achieved on reduced and alkylated immunoglobulin gamma molecules in 30min. The protein tryptic fragments and their modification products were analyzed and quantified by reversed-phase liquid chromatography/tandem mass spectrometry using an in-line LTQ Orbitrap mass spectrometer. The reduction and alkylation reaction time was also minimized by monitoring the completeness of the reaction using a high-resolution time-of-flight mass spectrometer. Using this 30-min in-solution trypsin digestion method, little protocol-induced deamidation or N-terminal glutamine cyclization product was observed and cleaner tryptic maps were obtained due to less trypsin self-digestion and fewer nonspecific cleavages. The throughput of trypsin digestion was also improved significantly compared with conventional trypsin digestion methods.


Assuntos
Mapeamento de Peptídeos/métodos , Tripsina/metabolismo , Alquilação , Sequência de Aminoácidos , Cromatografia Líquida , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Dados de Sequência Molecular , Oxirredução , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem
6.
Int J Biol Macromol ; 44(1): 81-5, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19014964

RESUMO

The following analytical methods have been used to identify and quantify degradation products in an E. coli expressed human immunoglobulin G Fc fusion protein in both liquid and lyophilized forms: two-dimensional AEX/RP/MS, limited proteolysis followed by LC/MS, and tryptic digestion followed by LC/MS/MS. After aging in a potassium phosphate pH 7.0 buffer for 3 months at 29 degrees C, peptide map analysis revealed that asparagine N78 (N297 according to Edelman sequencing) of the CH2 domain was the most rapidly deamidated site in the molecule probably due to the lack of the N-linked glycan on this asparagine, but this deamidation can be prevented under properly formulated conditions. This is the first report on the rate of deamidation on N297 of an IgG molecule without glycosylation. The active protein portion of the Fc fusion protein contains two methionine residues that are potentially susceptible to oxidation. Limited proteolysis was employed to cleave the active protein portion and measure the amount of oxidation. LC/MS analysis identified that the liquid sample aged at 29 degrees C for 3 months produced 40% oxidation, while the control sample contained only 4% oxidation on the active protein. In contrast to the aged liquid sample, the aged lyophilized sample showed no increase of deamidation or oxidation after storage at 37 degrees C for 8 months.


Assuntos
Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Proteínas Recombinantes de Fusão/química , Cromatografia Líquida de Alta Pressão , Escherichia coli , Humanos , Oxirredução , Espectrometria de Massas em Tandem
7.
Protein Sci ; 17(1): 95-106, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18156469

RESUMO

Recombinant human monoclonal antibodies have become important protein-based therapeutics for the treatment of various diseases. The antibody structure is complex, consisting of beta-sheet rich domains stabilized by multiple disulfide bridges. The dimerization of the C(H)3 domain in the constant region of the heavy chain plays a pivotal role in the assembly of an antibody. This domain contains a single buried, highly conserved disulfide bond. This disulfide bond was not required for dimerization, since a recombinant human C(H)3 domain, even in the reduced state, existed as a dimer. Spectroscopic analyses showed that the secondary and tertiary structures of reduced and oxidized C(H)3 dimer were similar, but differences were observed. The reduced C(H)3 dimer was less stable than the oxidized form to denaturation by guanidinium chloride (GdmCl), pH, or heat. Equilibrium sedimentation revealed that the reduced dimer dissociated at lower GdmCl concentration than the oxidized form. This implies that the disulfide bond shifts the monomer-dimer equilibrium. Interestingly, the dimer-monomer dissociation transition occurred at lower GdmCl concentration than the unfolding transition. Thus, disulfide bond formation in the human C(H)3 domain is important for stability and dimerization. Here we show the importance of the role played by the disulfide bond and how it affects the stability and monomer-dimer equilibrium of the human C(H)3 domain. Hence, these results may have implications for the stability of the intact antibody.


Assuntos
Anticorpos Monoclonais/química , Imunoglobulina G/química , Animais , Sítios de Ligação , Cromatografia Líquida de Alta Pressão , Sequência Conservada , Dimerização , Dissulfetos/análise , Dissulfetos/química , Humanos , Regiões Constantes de Imunoglobulina/química , Cinética , Camundongos , Modelos Moleculares , Oxirredução , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espectrofotometria
8.
Biochemistry ; 47(18): 5088-100, 2008 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-18407665

RESUMO

The Fc region has two highly conserved methionine residues, Met 33 (C(H)3 domain) and Met 209 (C(H)3 domain), which are important for the Fc's structure and biological function. To understand the effect of methionine oxidation on the structure and stability of the human IgG1 Fc expressed in Escherichia coli, we have characterized the fully oxidized Fc using biophysical (DSC, CD, and NMR) and bioanalytical (SEC and RP-HPLC-MS) methods. Methionine oxidation resulted in a detectable secondary and tertiary structural alteration measured by circular dichroism. This is further supported by the NMR data. The HSQC spectral changes indicate the structures of both C(H)2 and C(H)3 domains are affected by methionine oxidation. The melting temperature (Tm) of the C(H)2 domain of the human IgG1 Fc was significantly reduced upon methionine oxidation, while the melting temperature of the C(H)3 domain was only affected slightly. The change in the C(H)2 domain T m depended on the extent of oxidation of both Met 33 and Met 209. This was confirmed by DSC analysis of methionine-oxidized samples of two site specific methionine mutants. When incubated at 45 degrees C, the oxidized Fc exhibited an increased aggregation rate. In addition, the oxidized Fc displayed an increased deamidation (at pH 7.4) rate at the Asn 67 and Asn 96 sites, both located on the C(H)2 domain, while the deamidation rates of the other residues were not affected. The methionine oxidation resulted in changes in the structure and stability of the Fc, which are primarily localized to the C(H)2 domain. These changes can impact the Fc's physical and covalent stability and potentially its biological functions; therefore, it is critical to monitor and control methionine oxidation during manufacturing and storage of protein therapeutics.


Assuntos
Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/química , Imunoglobulina G/imunologia , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/isolamento & purificação , Imunoglobulina G/genética , Cinética , Metionina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Desnaturação Proteica , Estrutura Terciária de Proteína , Temperatura
9.
J Mol Biol ; 368(4): 1187-201, 2007 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-17391700

RESUMO

Structural properties and folding of interleukin-1 receptor antagonist (IL-1ra), a therapeutically important cytokine with a symmetric beta-trefoil topology, are characterized using optical spectroscopy, high-resolution NMR, and size-exclusion chromatography. Spectral contributions of two tryptophan residues, Trp17 and Trp120, present in the wild-type protein, have been determined from mutational analysis. Trp17 dominates the emission spectrum of IL-1ra, while Trp120 is quenched presumably by the nearby cysteine residues in both folded and unfolded states. The same Trp17 gives rise to two characteristic negative peaks in the aromatic CD. Urea denaturation of the wild-type protein is probed by measuring intrinsic and extrinsic (binding of 1-anilinonaphthalene-8-sulfonic acid) fluorescence, near- and far-UV CD, and 1D and 2D ((1)H-(15)N heteronuclear single quantum coherence (HSQC)) NMR. Overall, the data suggest an essentially two-state equilibrium denaturation mechanism with small, but detectable structural changes within the pretransition region. The majority of the (1)H-(15)N HSQC cross-peaks of the folded state show only a limited chemical shift change as a function of the denaturant concentration. However, the amide cross-peak of Leu31 demonstrates a significant urea dependence that can be fitted to a two-state binding model with a dissociation constant of 0.95+/-0.04 M. This interaction has at least a five times higher affinity than reported values for nonspecific urea binding to denatured proteins and peptides, suggesting that the structural context around Leu31 stabilizes the protein-urea interaction. A possible role of denaturant binding in inducing the pretransition changes in IL-1ra is discussed. Urea unfolding of wild-type IL-1ra is sufficiently slow to enable HPLC separation of folded and unfolded states. Quantitative size-exclusion chromatography has provided a hydrodynamic view of the kinetic denaturation process. Thermodynamic stability and unfolding kinetics of IL-1ra resemble those of structurally and evolutionary close IL-1beta, suggesting similarity of their free energy landscapes.


Assuntos
Proteína Antagonista do Receptor de Interleucina 1/química , Naftalenossulfonato de Anilina , Dicroísmo Circular , Corantes Fluorescentes , Humanos , Indicadores e Reagentes , Proteína Antagonista do Receptor de Interleucina 1/genética , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Desnaturação Proteica , Dobramento de Proteína , Termodinâmica , Triptofano/química , Ureia
10.
J Chromatogr A ; 1175(1): 63-8, 2007 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-17980377

RESUMO

A diphenyl column was able to resolve two closely related monoclonal IgG2 molecules, while a C8 column failed to separate these IgGs under identical chromatographic conditions. The diphenyl column also showed a better separation of a mixture of two light and two heavy chains than the C8 column. The influence of amino acid side chains from protein sequences in binding to the diphenyl and C8 stationary phases was studied by using a set of synthetic peptides with the sequence GXXLLLKK, where X represents substitution with all of the 20 amino acids. Peptides containing aromatic amino acids showed a greater binding on the diphenyl column than on the C8 column. This increase in retention was attributed to pi-pi interactions between the aromatic amino acid side chains and the diphenyl ligand. Based on the retention of peptides on the diphenyl column, new retention coefficients were assigned for the separation of proteins. A good correlation was observed between the sum of retention coefficients (SigmaRc) for IgGs and their retention time on the diphenyl column. On-column hydrogen-deuterium exchange showed that the diphenyl column had a larger surface of interaction with protein than the C8 column. pi-pi interactions and the large contact surface resulted in improved resolution of IgGs and their fragments on the diphenyl column.


Assuntos
Compostos de Bifenilo/química , Cromatografia Líquida/métodos , Imunoglobulina G/isolamento & purificação , Fragmentos de Peptídeos/isolamento & purificação , Animais , Anticorpos Monoclonais/isolamento & purificação , Células CHO , Cricetinae , Cricetulus , Humanos , Ligantes , Fatores de Tempo
11.
Protein Sci ; 15(5): 1063-75, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16597829

RESUMO

Polyethylene glycol (PEG) conjugation to proteins has emerged as an important technology to produce drug molecules with sustained duration in the body. However, the implications of PEG conjugation to protein aggregation have not been well understood. In this study, conducted under physiological pH and temperature, N-terminal attachment of a 20 kDa PEG moiety to GCSF had the ability to (1) prevent protein precipitation by rendering the aggregates soluble, and (2) slow the rate of aggregation relative to GCSF. Our data suggest that PEG-GCSF solubility was mediated by favorable solvation of water molecules around the PEG group. PEG-GCSF appeared to aggregate on the same pathway as that of GCSF, as evidenced by (a) almost identical secondary structural transitions accompanying aggregation, (b) almost identical covalent character in the aggregates, and (c) the ability of PEG-GCSF to rescue GCSF precipitation. To understand the role of PEG length, the aggregation properties of free GCSF were compared to 5kPEG-GCSF and 20kPEG-GCSF. It was observed that even 5kPEG-GCSF avoided precipitation by forming soluble aggregates, and the stability toward aggregation was vastly improved compared to GCSF, but only marginally less stable than the 20kPEG-GCSF. Biological activity measurements demonstrated that both 5kPEG-GCSF and 20kPEG-GCSF retained greater activity after incubation at physiological conditions than free GCSF, consistent with the stability measurements. The data is most compatible with a model where PEG conjugation preserves the mechanism underlying protein aggregation in GCSF, steric hindrance by PEG influences aggregation rate, while aqueous solubility is mediated by polar PEG groups on the aggregate surface.


Assuntos
Fator Estimulador de Colônias de Granulócitos/química , Fator Estimulador de Colônias de Granulócitos/metabolismo , Polietilenoglicóis/metabolismo , Proteínas/química , Precipitação Química , Cobre/química , Cinética , Estrutura Secundária de Proteína , Solubilidade , Relação Estrutura-Atividade
12.
Biochemistry ; 45(51): 15430-43, 2006 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-17176065

RESUMO

The effect of protein conformation on the rate of chemical degradation is poorly understood. To address the role of structure on chemical degradation kinetics, comparative oxidation studies of methionine residues in recombinant human granulocyte colony-stimulating factor (rhG-CSF) were performed. The kinetics of oxidation of methionine residues by hydrogen peroxide (H2O2) in rhG-CSF and corresponding chemically synthesized peptides thereof was measured at different temperatures. To assess structural effects, equilibrium denaturation experiments also were conducted on rhG-CSF, yielding the free energy of unfolding as a function of temperature. A comparison of the relative rates of oxidation of methionine residues in short peptides with those of corresponding methionine residues in rhG-CSF yields an understanding of how protein tertiary structure affects oxidation reactions. For the temperature range that was studied, 4-45 degrees C, the oxidation rate constants followed an Arrhenius equation quite well, suggesting the lack of temperature-induced local structural perturbations that affect chemical degradation rates. One of the four methionine residues, Met 122, exhibited an activation energy significantly different from that of the corresponding peptide. Extrapolation of kinetic data predicts non-Arrhenius behavior around the melting temperature. Three phenomenological models based on different mechanisms are discussed, and an application to shelf life prediction of pharmaceuticals is presented.


Assuntos
Fator Estimulador de Colônias de Granulócitos/química , Fator Estimulador de Colônias de Granulócitos/metabolismo , Metionina/química , Metionina/metabolismo , Modelos Químicos , Humanos , Cinética , Oxirredução , Peptídeos/síntese química , Peptídeos/metabolismo , Desnaturação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes , Temperatura , Termodinâmica , Triptofano/química
13.
J Pharm Sci ; 95(7): 1480-97, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16729274

RESUMO

Antimicrobial preservatives (e.g., benzyl alcohol), which are required in multidose formulations, can induce protein aggregation. In this study, the mechanism of benzyl alcohol-induced aggregation of recombinant human granulocyte colony-stimulating factor (rhGCSF) was investigated by determining the effects of temperature, pH, and sucrose on this process. rhGCSF was incubated at 25 and 37 degrees C and at pH 7.0 (phosphate-buffered saline, PBS) and pH 3.5 (HCl). Benzyl alcohol (0.9% w/v) accelerated aggregation of rhGCSF at pH 7.0, an effect that was much greater at 37 degrees C than at 25 degrees C and partially counteracted by 1.0 M sucrose. At pH 3.5, benzyl alcohol did not induce aggregation of rhGCSF. Spectroscopic studies showed that 0.9% benzyl alcohol altered the tertiary structure of rhGCSF at both pH, without detectably altering secondary structure. Structural perturbation was greater at 37 degrees C than at 25 degrees C. At both pH 7.0 and 3.5, the hydrogen-deuterium (H-D) exchange rate for rhGCSF was increased by 0.9% benzyl alcohol. Sucrose (1.0 M) partially counteracted the benzyl alcohol-induced perturbation of tertiary structure and the increase in H-D exchange rate. Thus, benzyl alcohol accelerates aggregation of rhGCSF at pH 7.0, because it favors partially unfolded aggregation-prone conformations of the protein. Sucrose partially counteracts benzyl alcohol-induced rhGCSF aggregation by shifting the molecular population away from these species and towards more compact conformations. We postulate that the absence of aggregation at pH 3.5, even with benzyl alcohol-induced structural perturbation, is due to the unfavorable energetics of intermolecular interactions (i.e., colloidal stability) between rhGCSF molecules at this pH.


Assuntos
Álcool Benzílico/química , Fator Estimulador de Colônias de Granulócitos/química , Sacarose/química , Cromatografia em Gel , Dicroísmo Circular , Medição da Troca de Deutério , Humanos , Concentração de Íons de Hidrogênio , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes , Espectrofotometria Infravermelho , Temperatura
14.
J Pharm Sci ; 95(1): 126-45, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16315222

RESUMO

Understanding the intermolecular products of antibodies as a consequence of host-cell expression, aging, and heat-stress can be insightful especially when it involves the development of a stable biopharmaceutical product. The dimerized form of Epratuzumab (an IgG(1) antibody) with a molecular mass of approximately 300 kDa (twice the monomer antibody molecular weight of approximately 150 kDa) was examined to gain a better perspective of its properties pertaining to structure and activity. The nascent dimer was shown to partially dissociate upon incubation at 30 degrees C and 37 degrees C, exhibit no discernable alteration of structure (i.e., secondary or tertiary structure based on CD and 2nd derivative UV spectroscopy), have approximately 70% covalent forms (based upon CE-SDS results) and manifest twofold higher activity relative to the active monomer form (on a weight basis the dimer and monomer have equal activity). Interestingly, these properties were not attributed to a single dimer species, but rather to a more complex dimer assembly. The Epratuzumab dimer was digested with papain to reveal three uniquely dimerized aggregates. The relative molar distribution of Fab:Fab, Fc:Fc, and Fab:Fc was found to be 4:3:8, respectively. The data suggest that all three predominantly covalent dimer adducts are capable of full activity, shedding light on their complex nature and showing that their target specificity was unaltered. ESI-MS data indicated the presence of remnant levels of noncovalent dimers for all three dimerized forms. Material aged at 37 degrees C exhibited a similar papain digest molar distribution of the three dimerized forms, except with enhanced chemical heterogeneity and an increase in covalent forms to approximately 84%.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais Humanizados , Antineoplásicos/química , Dimerização , Papaína/química , Temperatura
15.
Protein Sci ; 14(7): 1934-8, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15937282

RESUMO

Gaining a better understanding of the denatured state ensemble of proteins is important for understanding protein stability and the mechanism of protein folding. We studied the folding kinetics of ribonuclease Sa (RNase Sa) and a charge-reversal variant (D17R). The refolding kinetics are similar, but the unfolding rate constant is 10-fold greater for the variant. This suggests that charge-charge interactions in the denatured state and the transition state ensembles are more favorable in the variant than in RNase Sa, and shows that charge-charge interactions can influence the kinetics and mechanism of protein folding.


Assuntos
Isoenzimas/química , Desnaturação Proteica , Dobramento de Proteína , Ribonucleases/química , Estabilidade Enzimática , Isoenzimas/genética , Cinética , Mutação/genética , Conformação Proteica , Ribonucleases/genética
16.
Protein Sci ; 14(9): 2246-57, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16131655

RESUMO

Aggregation of partially folded intermediates populated during protein folding processes has been described for many proteins. Likewise, partially unfolded chains, generated by perturbation of numerous proteins by heat or chemical denaturants, have also been shown to aggregate readily. However, the process of protein aggregation from native-state conditions is less well understood. Granulocyte-colony stimulating factor (G-CSF), a member of the four-helix bundle class of cytokines, is a therapeutically relevant protein involved in stimulating the growth and maturation of phagocytotic white blood cells. Under native-like conditions (37 degrees C [pH 7.0]), G-CSF shows a significant propensity to aggregate. Our data suggest that under these conditions, native G-CSF exists in equilibrium with an altered conformation, which is highly aggregation prone. This species is enriched in 1-2 M GdmCl, as determined by tryptophan fluorescence and increased aggregation kinetics. In particular, specific changes in Trp58 fluorescence report a local rearrangement in the large loop region between helices A and B. However, circular dichroism, reactivity toward cyanylation, and ANS binding demonstrate that this conformational change is subtle, having no substantial disruption of secondary and tertiary structure, reactivity of the free sulfhydryl at Cys17 or exposure of buried hydrophobic regions. There is no indication that this altered conformation is important to biological activity, making it an attractive target for rational protein stabilization.


Assuntos
Fator Estimulador de Colônias de Granulócitos/química , Fenômenos Biofísicos , Biofísica , Dicroísmo Circular , Cisteína/química , Fluorescência , Guanidina/química , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica , Desnaturação Proteica , Proteínas Recombinantes , Triptofano/química
17.
Protein Sci ; 11(10): 2504-11, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12237471

RESUMO

The folding kinetics of G-CSF were determined by trp-fluorescence and far-UV circular dichroism. Folding and unfolding was achieved by rapid dilution and mixing of the denaturant, GdnHCl. G-CSF is a four-helical bundle protein with two long loops between the first and second helices and between the third and fourth helices. The entire conformational change expected by fluorescence was observed by stopped-flow technology, but due to rapid refolding kinetics only a portion was observed by circular dichroism. G-CSF contains two trp residues, and their contribution to the fluorescent-detected kinetics were deciphered through the use of single-site trp mutants. The trp moieties are probes of the local conformation surrounding their environment. One trp at residue 118 is located within the third helix while the other trp at residue 58 is part of the long loop between the first and second helices. The refolding results were most consistent with the following mechanism: U <--> I(1) <--> I(2) <--> N; where U represents the unfolded protein, I(1) represents intermediate state 1, I(2) represents intermediate state 2, and N represents the native state. I(1) is characterized as having approximately one-half of the native-like helical structure and none of the native-like fluorescence. I(2) has 100% of the native helical structure and most of the trp-118 and little of the trp-58 native-like fluorescence. Thus refolding occurs in distinct stages with half of the helix forming first followed by the remaining half of the helix including the third helix and finally the loop between the first and second helices folds.


Assuntos
Fator Estimulador de Colônias de Granulócitos/metabolismo , Dobramento de Proteína , Dicroísmo Circular , Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Cinética , Desnaturação Proteica/fisiologia , Triptofano/análogos & derivados , Triptofano/metabolismo
18.
Protein Sci ; 12(5): 1030-8, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12717025

RESUMO

After a cytokine binds to its receptor on the cell surface (pH approximately 7), the complex is internalized into acidic endosomal compartments (pH approximately 5-6), where partially unfolded intermediates can form. The nature of these structural transitions was studied for wild-type interleukin-2 (IL-2) and wild-type granulocyte colony-stimulating factor (G-CSF). A noncoincidence of denaturation transitions in the secondary and tertiary structure of IL-2 and tertiary structural perturbations in G-CSF suggest the presence of an intermediate state for each, a common feature of this structural family of four-helical bundle proteins. Unexpectedly, both IL-2 and G-CSF display monotonic increases in stability as the pH is decreased from 7 to 4. We hypothesize that such cytokines with cell-based clearance mechanisms in vivo may have evolved to help stabilize endosomal complexes for sorting to lysosomal degradation. We show that mutants of both IL-2 and G-CSF have differential stabilities to their wild-type counterparts as a function of pH, and that these differences may explain the differences in ligand trafficking and depletion. Further understanding of the structural changes accompanying unfolding may help guide cytokine design with respect to ligand binding, endocytic trafficking, and, consequently, therapeutic efficacy.


Assuntos
Fator Estimulador de Colônias de Granulócitos/química , Interleucina-2/química , Desnaturação Proteica , Endocitose , Guanidina/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Mutação , Conformação Proteica , Estrutura Secundária de Proteína , Transporte Proteico
19.
Curr Pharm Des ; 10(31): 3901-11, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15579079

RESUMO

Biological activity and clinical efficacy of a therapeutic protein are contingent upon the structural stability, bioavailability, and clearance rates of the protein. In this review, we examine the class of 4-helical bundle cytokines for common stability properties that may affect biological structure and efficacy. Three critical stability features that are hallmarks of this class of cytokines are the pH dependence of structural stability, the presence of folding intermediates, and the population of aggregation intermediates. We hypothesize that certain cytokines have increased stability in acid to enable receptor-mediated clearance, and that reengineering local endocytic trafficking can result in dramatic improvements in global serum half-life and therapeutic efficacy. The common feature of folding and aggregation intermediates has implications on kinetic folding pathways, membrane permeability, solubility, and precipitation properties that are critical for commercial production, formulation, and delivery. Understanding the structural stability properties of this class of cytokines may help elucidate new approaches to improving therapeutic efficacy.


Assuntos
Citocinas/química , Citocinas/fisiologia , Estabilidade de Medicamentos , Preparações Farmacêuticas/normas , Animais , Citocinas/classificação , Meia-Vida , Humanos , Concentração de Íons de Hidrogênio , Engenharia de Proteínas/métodos , Proteínas/química , Proteínas/farmacologia , Proteínas/uso terapêutico , Tecnologia Farmacêutica/métodos , Tecnologia Farmacêutica/tendências
20.
J Pharm Sci ; 93(12): 3096-102, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15514984

RESUMO

In this article, a comprehensive picture of the oxidation of protein pharmaceuticals by peroxides is developed based on our earlier computational and experimental studies. We propose a new mechanism, the water-mediated mechanism, for the oxidation of methionine residues, and it has been shown to satisfy all available experimental data including new data reported here. Based on the water-mediated mechanism, we found a structural property, average 2-shell water coordination number, that correlates well to the relative rates of oxidation of methionine groups. We used this to study the oxidation of granulocyte colony-stimulating factor (G-CSF) and 1-34 human parathyroid hormone hPTH(1-34). We believe that this comprehensive picture should aid researchers in the pharmaceutical sciences to develop solvent formulations for therapeutic proteins in a more rational way.


Assuntos
Metionina/metabolismo , Peróxidos/metabolismo , Preparações Farmacêuticas/metabolismo , Proteínas/metabolismo , Sítios de Ligação/fisiologia , Metionina/química , Estrutura Molecular , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA