Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Med ; 184(2): 609-18, 1996 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-8760814

RESUMO

Becker muscular dystrophy is an X-linked disease due to mutations of the dystrophin gene. We now show that neuronal-type nitric oxide synthase (nNOS), an identified enzyme in the dystrophin complex, is uniquely absent from skeletal muscle plasma membrane in many human Becker patients and in mouse models of dystrophinopathy. An NH2-terminal domain of nNOS directly interacts with alpha 1-syntrophin but not with other proteins in the dystrophin complex analyzed. However, nNOS does not associate with alpha 1-syntrophin on the sarcolemma in transgenic mdx mice expressing truncated dystrophin proteins. This suggests a ternary interaction of nNOS, alpha 1-syntrophin, and the central domain of dystrophin in vivo, a conclusion supported by developmental studies in muscle. These data indicate that proper assembly of the dystrophin complex is dependent upon the structure of the central rodlike domain and have implications for the design of dystrophin-containing vectors for gene therapy.


Assuntos
Distrofias Musculares/enzimologia , Óxido Nítrico Sintase/metabolismo , Animais , Biópsia , Proteínas de Ligação ao Cálcio , Proteínas do Citoesqueleto/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Mutantes , Proteínas Musculares/metabolismo , Músculos/metabolismo , Sarcoglicanas , Sarcolema/enzimologia , Utrofina
2.
Dev Cell ; 1(5): 667-77, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11709187

RESUMO

Morphological complexity of neurons contributes to their functional complexity. How neurons generate different dendritic patterns is not known. We identified the sequoia mutant from a previous screen for dendrite mutants. Here we report that Sequoia is a pan-neural nuclear protein containing two putative zinc fingers homologous to the DNA binding domain of Tramtrack. sequoia mutants affect the cell fate decision of a small subset of neurons but have global effects on axon and dendrite morphologies of most and possibly all neurons. In support of sequoia as a specific regulator of neuronal morphogenesis, microarray experiments indicate that sequoia may regulate downstream genes that are important for executing neurite development rather than altering a variety of molecules that specify cell fates.


Assuntos
Axônios/metabolismo , Proteínas de Ligação a DNA/metabolismo , Dendritos/metabolismo , Proteínas de Drosophila , Drosophila/embriologia , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/citologia , Sistema Nervoso/embriologia , Proteínas Repressoras/química , Dedos de Zinco , Sequência de Aminoácidos , Animais , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Núcleo Celular/metabolismo , Tamanho Celular , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Drosophila/citologia , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Dados de Sequência Molecular , Mutação/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos
3.
Neuron ; 17(4): 759-67, 1996 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8893032

RESUMO

Dynamic regulation of ion channel interactions with the cytoskeleton mediates aspects of synaptic plasticity, yet mechanisms for this process are largely unknown. Here, we report that two inwardly rectifying K+ channels, Kir 2.1 and 2.3, bind to PSD-95, a cytoskeletal protein of postsynaptic densities that clusters NMDA receptors and voltage-dependent K+ channels. Kir 2.3 colocalizes with PSD-95 in neuronal populations in forebrain, and a PSD-95/Kir 2.3 complex occurs in hippocampus. Within the C-terminal tail of Kir 2.3, a serine residue critical for interaction with PSD-95, is also a substrate for phosphorylation by protein kinase A (PKA). Stimulation of PKA in intact cells causes rapid dissociation of the channel from PSD-95. This work identifies a physiological mechanism for regulating ion channel interactions with the postsynaptic density.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização , Canais de Potássio/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Western Blotting , Calcimicina/farmacologia , Linhagem Celular , Colforsina/farmacologia , Humanos , Rim , Mamíferos , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Fosforilação , Canais de Potássio/química , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Acetato de Tetradecanoilforbol/farmacologia , Transfecção
4.
Neuron ; 28(1): 91-101, 2000 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-11086986

RESUMO

Neurons elaborate dendrites with stereotypic branching patterns, thereby defining their receptive fields. These branching patterns may arise from properties intrinsic to the neurons or competition between neighboring neurons. Genetic and laser ablation studies reported here reveal that different multiple dendritic neurons in the same dorsal cluster in the Drosophila embryonic PNS do not compete with one another for dendritic fields. In contrast, when dendrites from homologous neurons in the two hemisegments meet at the dorsal midline in larval stages, they appear to repel each other. The formation of normal dendritic fields and the competition between dendrites of homologous neurons require the proper expression level of Flamingo, a G protein-coupled receptor-like protein, in embryonic neurons. Whereas Flamingo functions downstream of Frizzled in specifying planar polarity, Flamingo-dependent dendritic outgrowth is independent of Frizzled.


Assuntos
Caderinas/metabolismo , Dendritos/metabolismo , Proteínas de Drosophila , Drosophila/embriologia , Embrião não Mamífero/inervação , Neurônios/metabolismo , Animais , Caderinas/genética , Dendritos/ultraestrutura , Embrião não Mamífero/citologia , Receptores Frizzled , Larva/citologia , Proteínas de Membrana/genética , Mutação , Neurônios/ultraestrutura , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G , Transdução de Sinais/genética
5.
Neuron ; 24(3): 659-72, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10595517

RESUMO

Postsynaptic density 95 (PSD-95/SAP-90) is a membrane associated guanylate kinase (GK) PDZ protein that scaffolds glutamate receptors and associated signaling networks at excitatory synapses. Affinity chromatography identifies cypin as a major PSD-95-binding protein in brain extracts. Cypin is homologous to a family of hydrolytic bacterial enzymes and shares some similarity with collapsin response mediator protein (CRMP), a cytoplasmic mediator of semaphorin III signalling. Cypin is discretely expressed in neurons and is polarized to basal membranes in intestinal epithelial cells. Overexpression of cypin in hippocampal neurons specifically perturbs postsynaptic trafficking of PSD-95 and SAP-102, an effect not produced by overexpression of other PDZ ligands. In fact, PSD-95 can induce postsynaptic clustering of an otherwise diffusely localized K+ channel, Kv1.4. By regulating postsynaptic protein sorting, cypin may influence synaptic development and plasticity.


Assuntos
Proteínas de Transporte/fisiologia , Citosol/fisiologia , Guanina Desaminase , Proteínas do Tecido Nervoso/fisiologia , Sinapses/fisiologia , Sequência de Aminoácidos/genética , Animais , Sítios de Ligação/fisiologia , Encéfalo/citologia , Encéfalo/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Fracionamento Químico , Proteína 4 Homóloga a Disks-Large , Guanilato Quinases , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Membranas Intracelulares/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Núcleosídeo-Fosfato Quinase/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ratos/embriologia , Sinapses/metabolismo
6.
Curr Opin Neurobiol ; 7(3): 374-8, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9232800

RESUMO

Endogenous nitric oxide (NO) mediates certain aspects of synaptic plasticity and neurotoxicity associated with NMDA-type glutamate receptors. Neuronal NO synthase contains a modular protein-protein interaction motif, termed the PDZ domain, that links the synthase to a synaptic protein complex containing postsynaptic density protein PSD-95 and NMDA receptors. Characterization of this pathway has provided new insights into the role of NO in brain physiology and disease.


Assuntos
Óxido Nítrico/farmacologia , Transdução de Sinais/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Hipocampo/efeitos dos fármacos , Modelos Biológicos , Músculo Esquelético/efeitos dos fármacos
7.
Cancer Res ; 55(4): 727-30, 1995 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-7531613

RESUMO

The nitric oxide synthases (NOS) are a family of related enzymes which regulate the production of NO, a free radical gas implicated in a wide variety of biological processes. Vasodilation and increased tumor blood flow, increased vascular permeability, modulation of host tumoricidal activity, and free radical injury to tumor cells and adjacent normal tissues are pathophysiological features of malignant tumors that may be mediated by NO. We examined human brain tumors for three NOS isoforms and NADPH diaphrase, a histochemical marker of NOS activity in the brain. We detected increased expression of the brain and endothelial forms of NOS [NOS I and NOS II, respectively (C. Nathan and Q. Xie. Cell, 78: 915-919, 1994)] in astrocytic tumors, and the highest levels of expression was found in higher grade tumors. Each of these two isoforms was found in tumor cells and tumor endothelial cells. The macrophage isoform of NOS (NOS III) was less frequently detected and expressed at a lower level, predominantly in tumor endothelial cells. NADPH diaphorase staining for NOS activity paralleled this pattern of NOS expression. Western blot analysis of tumor tissues for these NOS isoforms confirmed these observations. Our data indicate that malignant central nervous system neoplasms express unexpectedly high levels of NOS and suggest that NO production may be associated with pathophysiological processes important to these tumors.


Assuntos
Aminoácido Oxirredutases/análise , Neoplasias Encefálicas/enzimologia , Isoenzimas/análise , Western Blotting , Encéfalo/enzimologia , Neoplasias Encefálicas/química , Neoplasias Encefálicas/patologia , Divisão Celular/fisiologia , Glioblastoma/química , Glioblastoma/enzimologia , Glioblastoma/patologia , Humanos , Imuno-Histoquímica , NADPH Desidrogenase/análise , Óxido Nítrico Sintase
9.
Dev Neurosci ; 19(3): 224-31, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-9208206

RESUMO

Nitric oxide (NO) participates in diverse physiological processes ranging from neurotransmission to muscle relaxation. Neuronal-derived NO can be either beneficial or detrimental depending on the cellular context. Neuronal NO synthase (nNOS) must therefore be tightly regulated. One level of regulation involves synthesis of numerous nNOS mRNA transcripts. At least six distinct molecular species of nNOS mRNA are expressed in a tissue and developmentally-regulated manner. Alternative splicing allows the creation of nNOS proteins differing in both enzymatic characteristics and structural features. As one example, we find that there are nNOS mRNAs lacking exon 2. One isoform, nNOS beta, retains full enzymatic activity but lacks a major protein-protein interaction domain (PDZ domain) responsible for targeting nNOS to synaptic membranes. This alternative splicing produces a mislocalized but fully active protein which may be relevant to certain pathologies. As evidence of this, we find that many human brain tumors express an alternatively spliced form of nNOS that co-migrates with nNOS beta, and lacks exon 2. Finally, we also find a 2.5-kb testis-specific nNOS mRNA corresponding to the C-terminal reductase domain of nNOS whose function is unclear.


Assuntos
Proteínas do Tecido Nervoso/biossíntese , Neurônios/enzimologia , Óxido Nítrico Sintase/biossíntese , Splicing de RNA , RNA Mensageiro/biossíntese , Transcrição Gênica , Animais , Sequência de Bases , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Células Cultivadas , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Indução Enzimática , Éxons/genética , Humanos , Proteínas de Insetos/biossíntese , Proteínas de Insetos/genética , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Proteínas Musculares/biossíntese , Proteínas Musculares/genética , Músculo Esquelético/enzimologia , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Ratos , Especificidade da Espécie
10.
Cell ; 82(5): 743-52, 1995 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-7545544

RESUMO

Nitric oxide (NO) is synthesized in skeletal muscle by neuronal-type NO synthase (nNOS), which is localized to sarcolemma of fast-twitch fibers. Synthesis of NO in active muscle opposes contractile force. We show that nNOS partitions with skeletal muscle membranes owing to association of nNOS with dystrophin, the protein mutated in Duchenne muscular dystrophy (DMD). The dystrophin complex interacts with an N-terminal domain of nNOS that contains a GLGF motif. mdx mice and humans with DMD evince a selective loss of nNOS protein and catalytic activity from muscle membranes, demonstrating a novel role for dystrophin in localizing a signaling enzyme to the myocyte sarcolemma. Aberrant regulation of nNOS may contribute to preferential degeneration of fast-twitch muscle fibers in DMD.


Assuntos
Aminoácido Oxirredutases/análise , Distrofina/análise , Músculo Esquelético/química , Distrofias Musculares/enzimologia , Sarcolema/química , Aminoácido Oxirredutases/classificação , Sequência de Aminoácidos , Animais , Citoesqueleto/química , Citosol/enzimologia , Humanos , Imuno-Histoquímica , Isoenzimas/análise , Camundongos , Camundongos Endogâmicos mdx , Dados de Sequência Molecular , Músculo Esquelético/enzimologia , Distrofia Muscular Animal/enzimologia , Óxido Nítrico Sintase , Sarcolema/enzimologia
11.
Genes Dev ; 13(19): 2549-61, 1999 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-10521399

RESUMO

Signaling between neurons requires highly specialized subcellular structures, including dendrites and axons. Dendrites exhibit diverse morphologies yet little is known about the mechanisms controlling dendrite formation in vivo. We have developed methods to visualize the stereotyped dendritic morphogenesis in living Drosophila embryos. Dendrite development is altered in prospero mutants and in transgenic embryos expressing a constitutively active form of the small GTPase cdc42. From a genetic screen, we have identified several genes that control different aspects of dendrite development including dendritic outgrowth, branching, and routing. These genes include kakapo, a large cytoskeletal protein related to plectin and dystrophin; flamingo, a seven-transmembrane protein containing cadherin-like repeats; enabled, a substrate of the tyrosine kinase Abl; and nine potentially novel loci. These findings begin to reveal the molecular mechanisms controlling dendritic morphogenesis.


Assuntos
Caderinas/genética , Proteínas do Citoesqueleto/genética , Proteínas de Ligação a DNA/genética , Dendritos/fisiologia , Proteínas de Drosophila , Drosophila/genética , Proteínas dos Microfilamentos , Fatores de Transcrição , Animais , Drosophila/embriologia , Proteínas de Ligação ao GTP/genética , Genes de Insetos , Proteínas de Insetos , Morfogênese , Mutagênese , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Proteínas Nucleares/genética
12.
J Neurosci ; 16(23): 7407-15, 1996 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-8922396

RESUMO

Nitric oxide (NO) formation in brain is regulated by the calcium/calmodulin dependence of neuronal NO synthase (nNOS). Calcium influx through NMDA-type glutamate receptors is efficiently coupled to nNOS activity, whereas many other intracellular calcium pathways are poorly coupled. To elucidate possible mechanisms responsible for this coupling, we performed yeast two-hybrid screening to identify proteins that interact with nNOS. Two nNOS interacting proteins were identified: the postsynaptic density proteins PSD-93 and PSD-95. Here, we report the cloning and characterization of PSD-93. PSD-93 is expressed in discrete neuronal populations as well as in specific non-neuronal cells, and it exhibits complex molecular diversity attributable to tissue-specific alternative splicing. PSD-93, like PSD-95, binds to nNOS and to the NMDA receptor 2B. PSD-93, however, is unique among PSD-95/SAP-90 family members in its expression in Purkinje neuron cell bodies and dendrites. We also demonstrate that the PDZ domain at the N terminus of nNOS is required, but it is not sufficient for interaction with PSD-93/95. Given that PSD-93 and PSD-95 each contain multiple potential binding sites for nNOS and the NMDA receptor, complexes involving oligomers of PSD-93/95 may help account for the functional as well as the physical coupling of nNOS to NMDA receptors.


Assuntos
Clonagem Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Sequência de Bases , Cerebelo/metabolismo , Cerebelo/ultraestrutura , Dendritos/metabolismo , Proteína 4 Homóloga a Disks-Large , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Dados de Sequência Molecular , Neurônios/metabolismo , Células de Purkinje/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
13.
J Neurosci ; 18(21): 8805-13, 1998 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-9786987

RESUMO

Postsynaptic density-93 (PSD-93)/Chapsyn-110 is a member of the membrane-associated guanylate kinase (MAGUK) family of PDZ domain-containing proteins. MAGUKs are widely expressed in the brain and are critical elements of the cytoskeleton and of certain synapses. In the ultrastructural studies that are described here, PSD-93 localizes to both postsynaptic densities and dendritic microtubules of cerebellar Purkinje neurons. The microtubule localization is paralleled by a high-affinity in vivo interaction of PSD-93 via its guanylate kinase (GK) domain with microtubule-associated protein 1A (MAP1A). GK domain truncations that mimic genetically identified mutations of a Drosophila MAGUK, discs-large, disrupt the GK/MAP-1A interaction. Additional biochemical experiments demonstrate that intact MAGUKs do not bind to MAP1A as effectively as do isolated GK domains. This appears to be attributable to an intramolecular inhibition of the GK domain by the PDZs, because GK binding activity of full-length MAGUKs is partially restored by a variety of PDZ ligands, including the C termini of NMDA receptor 2B, adenomatous polyposis coli (APC), and CRIPT. Beyond demonstrating a novel cytoskeletal link for PSD-93, these experiments support a model in which intramolecular interactions between the multiple domains of MAGUKs regulate intermolecular associations and thereby may play a role in the proper targeting and function of MAGUK proteins.


Assuntos
Dendritos/metabolismo , Proteínas dos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células de Purkinje/metabolismo , Animais , Sítios de Ligação , Guanilato Quinases , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Microscopia Imunoeletrônica , Núcleosídeo-Fosfato Quinase/metabolismo , Células de Purkinje/ultraestrutura , Ratos , Membranas Sinápticas/metabolismo , Proteínas Supressoras de Tumor
14.
Cell ; 84(5): 757-67, 1996 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-8625413

RESUMO

Neuronal nitric oxide synthase (nNOS) is concentrated at synaptic junctions in brain and motor endplates in skeletal muscle. Here, we show that the N-terminus of nNOS, which contains a PDZ protein motif, interacts with similar motifs in postsynaptic density-95 protein (PSD-95) and a related novel protein, PSD-93.nNOS and PSD-95 are coexpressed in numerous neuronal populations, and a PSD-95/nNOS complex occurs in cerebellum. PDZ domain interactions also mediate binding of nNOS to skeletal muscle syntrophin, a dystrophin-associated protein. nNOS isoforms lacking a PDZ domain, identified in nNOSdelta/delta mutant mice, do not associate with PSD-95 in brain or with skeletal muscle sarcolemma. Interaction of PDZ-containing domains therefore mediates synaptic association of nNOS and may play a more general role in formation of macromolecular signaling complexes.


Assuntos
Encéfalo/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Óxido Nítrico Sintase/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Encéfalo/embriologia , Proteínas de Ligação ao Cálcio , Membrana Celular/metabolismo , Primers do DNA , Proteína 4 Homóloga a Disks-Large , Embrião de Mamíferos , Éxons , Expressão Gênica , Guanilato Quinases , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/química , Modelos Estruturais , Dados de Sequência Molecular , Proteínas Musculares/química , Músculo Esquelético/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/química , Óxido Nítrico Sintase/biossíntese , Óxido Nítrico Sintase/química , Especificidade de Órgãos , Reação em Cadeia da Polimerase , Conformação Proteica , RNA Mensageiro/biossíntese , Ratos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA