Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 26(16): 13590-9, 2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20695608

RESUMO

Variants of lipase were attached to gold nanoparticles (NPs) and their enzymatic activity was studied. The two bioengineered lipase variants have been prepared with biotin groups attached to different residues on the protein outer surface. The biotinylation was evidenced by denaturing polyacrylamide gel electrophoresis and quantified by the ([2-(4'-hydroxyazobenzene)]benzoic acid spectrophotometric test. NPs of 14 +/- 1 nm diameter coated with thiolated-polyethylene glycol ligands containing controlled proportions of biotin moieties have been prepared and characterized by transmission electron microscopy, UV-vis spectroscopy, small angle neutron scattering, and elemental analysis. These biotin-functionalized NPs were conjugated to lipase using streptavidin as a linker molecule. Enzyme activity assays on the lipase-nanoparticle conjugates show that the lipase loading and activity of the NPs can be controlled by varying the percentage of biotin groups in the particle protecting coat. The lipase-NP conjugates prepared using one variant display higher activity than those prepared using the other variant, demonstrating orientation-dependent enzyme activity. Cryogenic transmission electron microscopy was used to visualize the enzymatic activity of lipase-NP on well-defined lipid substrates. It was found that lipase-coated NPs are able to digest the substrates in a different manner in comparison to the free lipase.


Assuntos
Ouro/química , Lipase/química , Cristais Líquidos/química , Nanopartículas Metálicas/química , Cristais Líquidos/ultraestrutura , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão
2.
Langmuir ; 22(25): 10754-61, 2006 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-17129056

RESUMO

Dense monolayers of [Ru(dpp)2Qbpy]2+, where dpp is 4,4'-diphenylphenanthroline and Qbpy is 2,2':4,4' ':4'4' '-quarterpyridyl, have been formed by spontaneous adsorption onto clean platinum microelectrodes. The cyclic voltammetry of these monolayers is nearly ideal, and three redox states are accessible over the potential range of +/-1.3 V. Chronoamperometry conducted on the microsecond time scale has been used to probe the dynamics of heterogeneous electron transfer and indicates that the standard heterogeneous electron-transfer rate constant, k degrees , is approximately 106 s-1. The metal complex emits at approximately 600 nm in fluid and solid solution as well as when bound to a platinum electrode surface within a dense monolayer. In the case of the monolayers, it appears that the excited states are not completely deactivated by radiationless energy transfer to the metal because electronic coupling between the adsorbates and the electrode is weak. The dynamics of lateral electron transfer between the electronically excited Ru2+* and ground-state Ru3+ species has been explored by measuring the luminescence intensity after defined quantities of Ru3+ have been produced electrochemically within the monolayer. The rate of lateral electron transfer is between 8 x 106 and 3 x 108 M-1 s-1, indicating efficient electron transfer between adsorbates in close-packed assemblies. Voltammetry conducted at megavolt per second scan rates has been used to directly probe the redox properties of the electronically excited species.


Assuntos
Isocianatos/química , Compostos Organometálicos/química , Piridinas/química , Rutênio/química , Adsorção , Eletroquímica , Elétrons , Luminescência , Microeletrodos , Estrutura Molecular , Oxirredução , Fotoquímica , Platina/química , Propriedades de Superfície
3.
Langmuir ; 22(7): 3294-9, 2006 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-16548591

RESUMO

The contribution of nonspecific interactions to the overall interactions of thiol-ssDNA and dsDNA macromolecules with gold nanoparticles was investigated. A systematic investigation utilizing dynamic light scattering and cryogenic transmission electron microscopy has been performed to directly measure and visualize the changes in particle size and appearance during functionalization of gold nanoparticles with thiol-ssDNA and nonthiolated dsDNA. The results show that both thiol-ssDNA and dsDNA do stabilize gold nanoparticle dispersions, but possible nonspecific interactions between the hydrophobic DNA bases and the gold surface promote interparticle interactions and cause aggregation within rather a short period of time. We also discuss the adsorption mechanisms of dsDNA and thiol-ssDNA to gold particles.


Assuntos
DNA de Cadeia Simples/química , Nanopartículas Metálicas/química , Compostos de Sulfidrila/química , Adsorção , Interações Hidrofóbicas e Hidrofílicas
4.
Bioconjug Chem ; 17(6): 1373-5, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17105213

RESUMO

A simple and versatile method for the preparation of functional enzyme-gold nanoparticle conjugates using "click" chemistry has been developed. In a copper-catalyzed 1,2,3-triazole cycloaddition, an acetylene-functionalized Thermomyces lanuginosus lipase has been attached to azide-functionalized water-soluble gold nanoparticles under retention of enzymatic activity. The products have been characterized by gel electrophoresis and a fluorometric lipase activity assay. It is estimated that the equivalent of approximately seven fully active lipase molecules are attached to each nanoparticle.


Assuntos
Ouro/química , Lipase/química , Lipase/metabolismo , Nanoestruturas/química , Estrutura Molecular
5.
Faraday Discuss ; (121): 391-403;discussion 441-62, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12227581

RESUMO

Transient emission spectroscopy has been used to probe the rate of photoinduced electron transfer between metal centres within a novel trimeric complex [[Os(bpy)2(bpe)2][Os(bpy)2Cl]2]4+, where bpy is 2,2'-bipyridyl and bpe is trans-1,2-bis-(4-pyridyl)ethylene. Transient emission experiments on the trimer, and on [Os(bpy)2 (bpe)2]2+ in which the [Os(bpy)2 Cl]+ quenching moieties are absent, reveal that the rate of photoinduced electron transfer (PET) across the bpe bridge is 1.3 +/- 0.1 x 10(8) s(-1). Investigations into the driving forces for oxidation and reduction of the electronically excited state within the trimer indicate that quenching of the [Os(bpy)2 (bpe)2]2+ centre within the trimer involves electron transfer from the [bpe Os(bpy)2 Cl]+ centres to the electronically excited state with a driving force of -0.3 eV. Monolayers of the complex, [Os(bpy)2 bpe pyridine]2+, have been formed by spontaneous adsorption onto platinum microelectrodes and used to probe the dynamics of electron transfer across the trans-1,2-bis-(4-pyridyl)ethylene bridge in the ground state. These monolayers are stable and exhibit well defined voltammetric responses for the Os2+/3+ redox reaction. Cyclic voltammograms recorded at high scan rates can be accurately modelled according to a non-adiabatic electron transfer model based on the Marcus theory using a standard heterogeneous electron transfer rate constant, k(o), of 3.1 +/- 0.2 x 10(4) s(-1) and a reorganization energy of 0.4 +/- 0.1 eV. This rate constant is a factor of approximately two orders of magnitude smaller than that found for photoinduced electron transfer across the same bpe bridge for identical driving forces. This significant difference is interpreted in terms of both the nature of the orbitals involved in electrochemically and optically driven electron transfer, as well as the strength of electronic coupling between two molecular components as opposed to a molecular component and a metal electrode.

6.
Anal Chem ; 76(19): 5611-9, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15456278

RESUMO

Electrons are transported within polymeric films of alkanethiolate monolayer-protected Au clusters (MPCs) by electron hopping (self-exchange) between the metal cores. The surrounding monolayers, the molecular linkers that generate the network polymer film, or both, presumably serve as tunneling bridges in the electron transfers. This paper introduces a steady-state electrochemical method for measuring electron hopping rates in solvent-wetted and swollen, ionically conductive MPC films. The films are network polymer films of nanoparticles, coated on a rotated disk electrode that is contacted by a solution of a redox species (decamethylferrocene, CpFe). Controlling the electrode potential such that the film mediates oxidation of the redox probe can force control of the overall current onto the rate of electron hopping within the film, which is characterized as the apparent electron diffusion coefficient D(E). D(E) is translated into an apparent electron hopping rate k(ET) by a cubic lattice model. The experiment is applied to MPC network polymer films linked by alpha,omega-alkanedithiolates and by metal ion-carboxylate connections. We evaluate the dependencies of apparent hopping rate on CpFe concentration, film thickness, electrode potential relative to the CpFe formal potential, film-swelling solvent, and temperature. The apparent hopping rates are in the 10(4)-10(5) s(-)(1) range, which is slower than those for the same kind of MPC films, but in a dry (nonswollen) state measured by electronic conductivities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA