Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34155114

RESUMO

Many latitudinal insect migrants including agricultural pests, disease vectors, and beneficial species show huge fluctuations in the year-to-year abundance of spring immigrants reaching temperate zones. It is widely believed that this variation is driven by climatic conditions in the winter-breeding regions, but evidence is lacking. We identified the environmental drivers of the annual population dynamics of a cosmopolitan migrant butterfly (the painted lady Vanessa cardui) using a combination of long-term monitoring and climate and atmospheric data within the western part of its Afro-Palearctic migratory range. Our population models show that a combination of high winter NDVI (normalized difference vegetation index) in the Savanna/Sahel of sub-Saharan Africa, high spring NDVI in the Maghreb of North Africa, and frequent favorably directed tailwinds during migration periods are the three most important drivers of the size of the immigration to western Europe, while our atmospheric trajectory simulations demonstrate regular opportunities for wind-borne trans-Saharan movements. The effects of sub-Saharan vegetative productivity and wind conditions confirm that painted lady populations on either side of the Sahara are linked by regular mass migrations, making this the longest annual insect migration circuit so far known. Our results provide a quantification of the environmental drivers of large annual population fluctuations of an insect migrant and hold much promise for predicting invasions of migrant insect pests, disease vectors, and beneficial species.


Assuntos
Migração Animal/fisiologia , Borboletas/fisiologia , Meio Ambiente , África do Norte , Animais , Simulação por Computador , Clima Desértico , Europa (Continente) , Geografia , Região do Mediterrâneo , Densidade Demográfica , Dinâmica Populacional , Estações do Ano , Vento
2.
Nature ; 535(7611): 241-5, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27362222

RESUMO

Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms within taxonomic and trophic groups. Despite this variability, we detected systematic variation in the direction and magnitude of phenological climate sensitivity. Secondary consumers showed consistently lower climate sensitivity than other groups. We used mid-century climate change projections to estimate that the timing of phenological events could change more for primary consumers than for species in other trophic levels (6.2 versus 2.5-2.9 days earlier on average), with substantial taxonomic variation (1.1-14.8 days earlier on average).


Assuntos
Mudança Climática/estatística & dados numéricos , Ecossistema , Animais , Organismos Aquáticos , Clima , Conjuntos de Dados como Assunto , Previsões , Chuva , Estações do Ano , Especificidade da Espécie , Temperatura , Fatores de Tempo , Reino Unido
3.
Glob Chang Biol ; 25(6): 1982-1994, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30761691

RESUMO

Global warming has advanced the timing of biological events, potentially leading to disruption across trophic levels. The potential importance of phenological change as a driver of population trends has been suggested. To fully understand the possible impacts, there is a need to quantify the scale of these changes spatially and according to habitat type. We studied the relationship between phenological trends, space and habitat type between 1965 and 2012 using an extensive UK dataset comprising 269 aphid, bird, butterfly and moth species. We modelled phenologies using generalized additive mixed models that included covariates for geographical (latitude, longitude, altitude), temporal (year, season) and habitat terms (woodland, scrub, grassland). Model selection showed that a baseline model with geographical and temporal components explained the variation in phenologies better than either a model in which space and time interacted or a habitat model without spatial terms. This baseline model showed strongly that phenologies shifted progressively earlier over time, that increasing altitude produced later phenologies and that a strong spatial component determined phenological timings, particularly latitude. The seasonal timing of a phenological event, in terms of whether it fell in the first or second half of the year, did not result in substantially different trends for butterflies. For moths, early season phenologies advanced more rapidly than those recorded later. Whilst temporal trends across all habitats resulted in earlier phenologies over time, agricultural habitats produced significantly later phenologies than most other habitats studied, probably because of nonclimatic drivers. A model with a significant habitat-time interaction was the best-fitting model for birds, moths and butterflies, emphasizing that the rates of phenological advance also differ among habitats for these groups. Our results suggest the presence of strong spatial gradients in mean seasonal timing and nonlinear trends towards earlier seasonal timing that varies in form and rate among habitat types.


Assuntos
Afídeos , Aves , Borboletas , Mariposas , Animais , Mudança Climática , Ecossistema , Estágios do Ciclo de Vida , Análise Espaço-Temporal
4.
Glob Chang Biol ; 24(3): 957-971, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29152888

RESUMO

A consequence of climate change has been an advance in the timing of seasonal events. Differences in the rate of advance between trophic levels may result in predators becoming mismatched with prey availability, reducing fitness and potentially driving population declines. Such "trophic asynchrony" is hypothesized to have contributed to recent population declines of long-distance migratory birds in particular. Using spatially extensive survey data from 1983 to 2010 to estimate variation in spring phenology from 280 plant and insect species and the egg-laying phenology of 21 British songbird species, we explored the effects of trophic asynchrony on avian population trends and potential underlying demographic mechanisms. Species which advanced their laying dates least over the last three decades, and were therefore at greatest risk of asynchrony, exhibited the most negative population trends. We expressed asynchrony as the annual variation in bird phenology relative to spring phenology, and related asynchrony to annual avian productivity. In warmer springs, birds were more asynchronous, but productivity was only marginally reduced; long-distance migrants, short-distance migrants and resident bird species all exhibited effects of similar magnitude. Long-term population, but not productivity, declines were greatest among those species whose annual productivity was most greatly reduced by asynchrony. This suggests that population change is not mechanistically driven by the negative effects of asynchrony on productivity. The apparent effects of asynchrony on population trends are therefore either more likely to be strongly expressed via other demographic pathways, or alternatively, are a surrogate for species' sensitivity to other environmental pressures which are the ultimate cause of decline.


Assuntos
Mudança Climática , Aves Canoras/fisiologia , Migração Animal , Animais , Dinâmica Populacional , Reprodução , Estações do Ano
5.
Glob Chang Biol ; 23(6): 2272-2283, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28073167

RESUMO

Climate change is increasingly altering the composition of ecological communities, in combination with other environmental pressures such as high-intensity land use. Pressures are expected to interact in their effects, but the extent to which intensive human land use constrains community responses to climate change is currently unclear. A generic indicator of climate change impact, the community temperature index (CTI), has previously been used to suggest that both bird and butterflies are successfully 'tracking' climate change. Here, we assessed community changes at over 600 English bird or butterfly monitoring sites over three decades and tested how the surrounding land has influenced these changes. We partitioned community changes into warm- and cold-associated assemblages and found that English bird communities have not reorganized successfully in response to climate change. CTI increases for birds are primarily attributable to the loss of cold-associated species, whilst for butterflies, warm-associated species have tended to increase. Importantly, the area of intensively managed land use around monitoring sites appears to influence these community changes, with large extents of intensively managed land limiting 'adaptive' community reorganization in response to climate change. Specifically, high-intensity land use appears to exacerbate declines in cold-adapted bird and butterfly species, and prevent increases in warm-associated birds. This has broad implications for managing landscapes to promote climate change adaptation.


Assuntos
Aves , Borboletas , Mudança Climática , Animais , Clima , Humanos , Dinâmica Populacional , Temperatura
6.
J Anim Ecol ; 86(1): 108-116, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27796048

RESUMO

There is growing recognition as to the importance of extreme climatic events (ECEs) in determining changes in species populations. In fact, it is often the extent of climate variability that determines a population's ability to persist at a given site. This study examined the impact of ECEs on the resident UK butterfly species (n = 41) over a 37-year period. The study investigated the sensitivity of butterflies to four extremes (drought, extreme precipitation, extreme heat and extreme cold), identified at the site level, across each species' life stages. Variations in the vulnerability of butterflies at the site level were also compared based on three life-history traits (voltinism, habitat requirement and range). This is the first study to examine the effects of ECEs at the site level across all life stages of a butterfly, identifying sensitive life stages and unravelling the role life-history traits play in species sensitivity to ECEs. Butterfly population changes were found to be primarily driven by temperature extremes. Extreme heat was detrimental during overwintering periods and beneficial during adult periods and extreme cold had opposite impacts on both of these life stages. Previously undocumented detrimental effects were identified for extreme precipitation during the pupal life stage for univoltine species. Generalists were found to have significantly more negative associations with ECEs than specialists. With future projections of warmer, wetter winters and more severe weather events, UK butterflies could come under severe pressure given the findings of this study.


Assuntos
Borboletas/fisiologia , Mudança Climática , Tempo (Meteorologia) , Distribuição Animal , Animais , Ecossistema , Características de História de Vida , Dinâmica Populacional , Estações do Ano , Reino Unido
7.
Conserv Biol ; 31(6): 1350-1361, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28474803

RESUMO

Citizen scientists are increasingly engaged in gathering biodiversity information, but trade-offs are often required between public engagement goals and reliable data collection. We compared population estimates for 18 widespread butterfly species derived from the first 4 years (2011-2014) of a short-duration citizen science project (Big Butterfly Count [BBC]) with those from long-running, standardized monitoring data collected by experienced observers (U.K. Butterfly Monitoring Scheme [UKBMS]). BBC data are gathered during an annual 3-week period, whereas UKBMS sampling takes place over 6 months each year. An initial comparison with UKBMS data restricted to the 3-week BBC period revealed that species population changes were significantly correlated between the 2 sources. The short-duration sampling season rendered BBC counts susceptible to bias caused by interannual phenological variation in the timing of species' flight periods. The BBC counts were positively related to butterfly phenology and sampling effort. Annual estimates of species abundance and population trends predicted from models including BBC data and weather covariates as a proxy for phenology correlated significantly with those derived from UKBMS data. Overall, citizen science data obtained using a simple sampling protocol produced comparable estimates of butterfly species abundance to data collected through standardized monitoring methods. Although caution is urged in extrapolating from this U.K. study of a small number of common, conspicuous insects, we found that mass-participation citizen science can simultaneously contribute to public engagement and biodiversity monitoring. Mass-participation citizen science is not an adequate replacement for standardized biodiversity monitoring but may extend and complement it (e.g., through sampling different land-use types), as well as serving to reconnect an increasingly urban human population with nature.


Assuntos
Biodiversidade , Borboletas , Conservação dos Recursos Naturais/métodos , Coleta de Dados/métodos , Animais , Dinâmica Populacional , Reino Unido
8.
Biometrics ; 72(4): 1305-1314, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27003561

RESUMO

At a time of climate change and major loss of biodiversity, it is important to have efficient tools for monitoring populations. In this context, animal abundance indices play an important rôle. In producing indices for invertebrates, it is important to account for variation in counts within seasons. Two new methods for describing seasonal variation in invertebrate counts have recently been proposed; one is nonparametric, using generalized additive models, and the other is parametric, based on stopover models. We present a novel generalized abundance index which encompasses both parametric and nonparametric approaches. It is extremely efficient to compute this index due to the use of concentrated likelihood techniques. This has particular relevance for the analysis of data from long-term extensive monitoring schemes with records for many species and sites, for which existing modeling techniques can be prohibitively time consuming. Performance of the index is demonstrated by several applications to UK Butterfly Monitoring Scheme data. We demonstrate the potential for new insights into both phenology and spatial variation in seasonal patterns from parametric modeling and the incorporation of covariate dependence, which is relevant for both monitoring and conservation. Associated R code is available on the journal website.


Assuntos
Invertebrados , Modelos Estatísticos , Estações do Ano , Animais , Borboletas , Conservação dos Recursos Naturais , Monitorização de Parâmetros Ecológicos , Densidade Demográfica
9.
Glob Chang Biol ; 21(9): 3313-22, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26390228

RESUMO

Phenology shifts are the most widely cited examples of the biological impact of climate change, yet there are few assessments of potential effects on the fitness of individual organisms or the persistence of populations. Despite extensive evidence of climate-driven advances in phenological events over recent decades, comparable patterns across species' geographic ranges have seldom been described. Even fewer studies have quantified concurrent spatial gradients and temporal trends between phenology and climate. Here we analyse a large data set (~129 000 phenology measures) over 37 years across the UK to provide the first phylogenetic comparative analysis of the relative roles of plasticity and local adaptation in generating spatial and temporal patterns in butterfly mean flight dates. Although populations of all species exhibit a plastic response to temperature, with adult emergence dates earlier in warmer years by an average of 6.4 days per °C, among-population differences are significantly lower on average, at 4.3 days per °C. Emergence dates of most species are more synchronised over their geographic range than is predicted by their relationship between mean flight date and temperature over time, suggesting local adaptation. Biological traits of species only weakly explained the variation in differences between space-temperature and time-temperature phenological responses, suggesting that multiple mechanisms may operate to maintain local adaptation. As niche models assume constant relationships between occurrence and environmental conditions across a species' entire range, an important implication of the temperature-mediated local adaptation detected here is that populations of insects are much more sensitive to future climate changes than current projections suggest.


Assuntos
Borboletas/fisiologia , Mudança Climática , Clima , Adaptação Biológica , Animais , Filogenia , Dinâmica Populacional , Estações do Ano , Temperatura , Reino Unido
10.
Glob Chang Biol ; 20(6): 1782-93, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24677422

RESUMO

There is increasing evidence that the distributions of a large number of species are shifting with global climate change as they track changing surface temperatures that define their thermal niche. Modelling efforts to predict species distributions under future climates have increased with concern about the overall impact of these distribution shifts on species ecology, and especially where barriers to dispersal exist. Here we apply a bio-climatic envelope modelling technique to investigate the impacts of climate change on the geographic range of ten cetacean species in the eastern North Atlantic and to assess how such modelling can be used to inform conservation and management. The modelling process integrates elements of a species' habitat and thermal niche, and employs "hindcasting" of historical distribution changes in order to verify the accuracy of the modelled relationship between temperature and species range. If this ability is not verified, there is a risk that inappropriate or inaccurate models will be used to make future predictions of species distributions. Of the ten species investigated, we found that while the models for nine could successfully explain current spatial distribution, only four had a good ability to predict distribution changes over time in response to changes in water temperature. Applied to future climate scenarios, the four species-specific models with good predictive abilities indicated range expansion in one species and range contraction in three others, including the potential loss of up to 80% of suitable white-beaked dolphin habitat. Model predictions allow identification of affected areas and the likely time-scales over which impacts will occur. Thus, this work provides important information on both our ability to predict how individual species will respond to future climate change and the applicability of predictive distribution models as a tool to help construct viable conservation and management strategies.


Assuntos
Distribuição Animal , Cetáceos/fisiologia , Mudança Climática , Conservação dos Recursos Naturais , Animais , Oceano Atlântico , Modelos Biológicos , Estações do Ano , Temperatura
11.
Ecol Appl ; 24(1): 108-20, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24640538

RESUMO

Conservation of endangered species necessitates a full appreciation of the ecological processes affecting the regulation, limitation, and persistence of populations. These processes are influenced by birth, death, and dispersal events, and characterizing them requires careful accounting of both the deterministic and stochastic processes operating at both local and regional population levels. We combined ecological theory and observations on Allee effects by linking mathematical analysis and the spatial and temporal population dynamics patterns of a highly endangered butterfly, the high brown fritillary, Argynnis adippe. Our theoretical analysis showed that the role of density-dependent feedbacks in the presence of local immigration can influence the strength of Allee effects. Linking this theory to the analysis of the population data revealed strong evidence for both negative density dependence and Allee effects at the landscape or regional scale. These regional dynamics are predicted to be highly influenced by immigration. Using a Bayesian state-space approach, we characterized the local-scale births, deaths, and dispersal effects together with measurement and process uncertainty in the metapopulation. Some form of an Allee effect influenced almost three-quarters of these local populations. Our joint analysis of the deterministic and stochastic dynamics suggests that a conservation priority for this species would be to increase resource availability in currently occupied and, more importantly, in unoccupied sites.


Assuntos
Borboletas/fisiologia , Espécies em Perigo de Extinção , Animais , Teorema de Bayes , Conservação dos Recursos Naturais , Demografia , Modelos Biológicos , Reino Unido
12.
Ecol Lett ; 16(7): 921-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23701124

RESUMO

Ecological responses to climate change may depend on complex patterns of variability in weather and local microclimate that overlay global increases in mean temperature. Here, we show that high-resolution temporal and spatial variability in temperature drives the dynamics of range expansion for an exemplar species, the butterfly Hesperia comma. Using fine-resolution (5 m) models of vegetation surface microclimate, we estimate the thermal suitability of 906 habitat patches at the species' range margin for 27 years. Population and metapopulation models that incorporate this dynamic microclimate surface improve predictions of observed annual changes to population density and patch occupancy dynamics during the species' range expansion from 1982 to 2009. Our findings reveal how fine-scale, short-term environmental variability drives rates and patterns of range expansion through spatially localised, intermittent episodes of expansion and contraction. Incorporating dynamic microclimates can thus improve models of species range shifts at spatial and temporal scales relevant to conservation interventions.


Assuntos
Borboletas/fisiologia , Clima , Animais , Ecossistema , Modelos Teóricos , Plantas , Dinâmica Populacional
13.
Biodivers Data J ; 11: e98737, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761082

RESUMO

Background: This paper complements the data published thus far about species of the nymphalid family with data collected in Romania's eight regions between 1887 and 1984 and elsewhere in Europe (Austria, Germany, Croația, the Republic of Moldova, Serbia and Switzerland), including the date and the site of original collection. For the first time, this research presents the collecting information of the species held in the entomological collection of the Museum of Natural History in Sibiu. It identifies the species of the nymphalid family in six of the museum's lepidoptera collections. These collections are of extraordinary interest not least because they are associated with natural scientists of European renown, such as Daniel Czekelius, Eugen Worell, Viktor Weindel, Rolf Weirauch, Heinrich Hann von Hannenheim and Eckbert Schneider. The analysis, cataloguing, centralisation and updating of the nomenclature resulted in a number of 1,865 specimens from 49 species and fifteen genera (of the 90 referenced in Romania's fauna): Aglais, Apatura, Araschnia, Argynnis, Brenthis, Boloria, Euphydryas, Inachis, Issoria, Libythea, Limenitis, Melitaea, Neptis, Nymphalis and Polygonia. Data published in a previous article add 101 specimens from the Vanessa genus. New information: Most species originate regionally from the nine counties of Transylvania followed by Oltenia and Moldova (three counties each), Banat and Dobrogea (two counties each), Crișana, Satu Mare and Muntenia (one county each) and the capital of Romania, Bucharest. The species presented in this paper also include the extinct taxon Polygoniaegea (Cramer, 1775), Eugen Worrell collection and three species that are endemic to Romania: Melitaearetyezatica Diöszeghy, 1930, Argynnispandoradacica Hormuzaki, 1892, Daniel Czekelius collection and Boloriapales ([Denis & Schiffermüller], 1775) carpathomeridionalis Crosson et Popescu-Gorj, 1963, both in the Viktor Weindel collection.

14.
Glob Chang Biol ; 18(9): 2720-9, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24501051

RESUMO

Climate warming threatens the survival of species at their warm, trailing-edge range boundaries but also provides opportunities for the ecological release of populations at the cool, leading edges of their distributions. Thus, as the climate warms, leading-edge populations are expected to utilize an increased range of habitat types, leading to larger population sizes and range expansion. Here, we test the hypothesis that the habitat associations of British butterflies have expanded over three decades of climate warming. We characterize the habitat breadth of 27 southerly distributed species from 77 monitoring transects between 1977 and 2007 by considering changes in densities of butterflies across 11 habitat types. Contrary to expectation, we find that 20 of 27 (74%) butterfly species showed long-term contractions in their habitat associations, despite some short-term expansions in habitat breadth in warmer-than-usual years. Thus, we conclude that climatic warming has ameliorated habitat contractions caused by other environmental drivers to some extent, but that habitat degradation continues to be a major driver of reductions in habitat breadth and population density of butterflies.

15.
Biol Lett ; 8(4): 590-3, 2012 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-22491762

RESUMO

Different vegetation types can generate variation in microclimates at local scales, potentially buffering species from adverse climates. To determine if species could respond to such microclimates under climatic warming, we evaluated whether ectothermic species (butterflies) can exploit favourable microclimates and alter their use of different habitats in response to year-to-year variation in climate. In both relatively cold (Britain) and warm (Catalonia) regions of their geographical ranges, most species shifted into cooler, closed habitats (e.g. woodland) in hot years, and into warmer, open habitats (e.g. grassland) in cooler years. Additionally, three-quarters of species occurred in closed habitats more frequently in the warm region than in the cool region. Thus, species shift their local distributions and alter their habitat associations to exploit favourable microclimates, although the magnitude of the shift (approx. 1.3% of individuals from open to shade, per degree Celsius) is unlikely to buffer species from impacts of regional climate warming.


Assuntos
Borboletas/fisiologia , Ecossistema , Microclima , Animais , Temperatura Baixa , Monitoramento Ambiental/métodos , Geografia , Temperatura Alta , Dinâmica Populacional , Estações do Ano , Especificidade da Espécie
16.
Ecol Evol ; 11(4): 1544-1557, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33613988

RESUMO

AIM: Europe's only globally critically endangered seabird, the Balearic shearwater (Puffinus mauretanicus), is thought to have expanded its postbreeding range northwards into UK waters, though its at sea distribution there is not yet well understood. This study aims to identify environmental factors associated with the species' presence, map the probability of presence of the species across the western English Channel and southern Celtic Sea, and estimate the number of individuals in this area. LOCATION: The western English Channel and southern Celtic Sea. METHODS: This study analyses strip transect data collected between 2013 and 2017 from vessel-based surveys in the western English Channel and southern Celtic Sea during the Balearic shearwater's postbreeding period. Using environmental data collected directly and from remote sensors both Generalized Additive Models and the Random Forest machine learning model were used to determine shearwater presence at different locations. Abundance was estimated separately using a density multiplication approach. RESULTS: Both models indicated that oceanographic features were better predictors of shearwater presence than fish abundance. Seafloor aspect, sea surface temperature, depth, salinity, and maximum current speed were the most important predictors. The estimated number of Balearic shearwaters in the prediction area ranged from 652 birds in 2017 to 6,904 birds in 2014. MAIN CONCLUSIONS: Areas with consistently high probabilities of shearwater presence were identified at the Celtic Sea front. Our estimates suggest that the study area in southwest Britain supports between 2% and 23% of the global population of Balearic shearwaters. Based on the timing of the surveys (mainly in October), it is probable that most of the sighted shearwaters were immatures. This study provides the most complete understanding of Balearic shearwater distribution in UK waters available to date, information that will help inform any future conservation actions concerning this endangered species.

17.
Ecol Lett ; 13(4): 473-84, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20148927

RESUMO

Habitat heterogeneity is often suggested as being important for the stability of populations, and promoted as a means to aid the conservation of species, but the evidence for such an assumption is poor. Here we show that heterogeneous landscapes that contain a variety of suitable habitat types are associated with more stable population dynamics for 35 British butterfly species from 166 sites. In addition, topographic heterogeneity may also promote stability. Our results were robust to different measures of population variability, differences in mean abundance among sites, and to the spatial scale (radius 1-5 km around the centres of sites) at which landscapes were analysed. Responses to landscape heterogeneity differed among species; for more mobile 'wider-countryside' species, habitat heterogeneity at larger landscape scales had the strongest effect on population dynamics. We suggest that heterogeneous landscapes offer a greater range of resources and microclimates, which can buffer populations against climatic variation and generate more stable population dynamics.


Assuntos
Borboletas , Ecossistema , Geografia , Animais , Dinâmica Populacional , Reino Unido
18.
Ecol Lett ; 12(10): 1091-102, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19747182

RESUMO

Species are thought to have more restricted niches towards their range boundaries, although this has rarely been quantified systematically. We analysed transect data for 41 butterfly species along climatic gradients within Britain and show that 71% of species have broader niches at sites with milder winters. Shifts in habitat associations are considerable across most species' ranges; averaged across all 41 species, we estimate that if 26% of individuals were associated with the favoured habitat on the species' warmest transect, then 70% of individuals would be confined to this habitat on the species' coldest transect. Species with more southerly distributions in Britain showed the greatest changes in their habitat associations. We conclude that geographic variation in realized niche breadth is common and relatively large, especially near range boundaries, and should be taken into account in conserving species under changing climates.


Assuntos
Borboletas/fisiologia , Clima , Ecossistema , Comportamento de Retorno ao Território Vital , Animais , Geografia , Especificidade da Espécie , Reino Unido
19.
Ecol Evol ; 9(20): 11775-11790, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31695887

RESUMO

Understanding how environmental change affects ecosystem function delivery is of primary importance for fundamental and applied ecology. Current approaches focus on single environmental driver effects on communities, mediated by individual response traits. Data limitations present constraints in scaling up this approach to predict the impacts of multivariate environmental change on ecosystem functioning. We present a more holistic approach to determine ecosystem function resilience, using long-term monitoring data to analyze the aggregate impact of multiple historic environmental drivers on species' population dynamics. By assessing covariation in population dynamics between pairs of species, we identify which species respond most synchronously to environmental change and allocate species into "response guilds." We then use "production functions" combining trait data to estimate the relative roles of species to ecosystem functions. We quantify the correlation between response guilds and production functions, assessing the resilience of ecosystem functioning to environmental change, with asynchronous dynamics of species in the same functional guild expected to lead to more stable ecosystem functioning. Testing this method using data for butterflies collected over four decades in the United Kingdom, we find three ecosystem functions (resource provisioning, wildflower pollination, and aesthetic cultural value) appear relatively robust, with functionally important species dispersed across response guilds, suggesting more stable ecosystem functioning. Additionally, by relating genetic distances to response guilds we assess the heritability of responses to environmental change. Our results suggest it may be feasible to infer population responses of butterflies to environmental change based on phylogeny-a useful insight for conservation management of rare species with limited population monitoring data. Our approach holds promise for overcoming the impasse in predicting the responses of ecosystem functions to environmental change. Quantifying co-varying species' responses to multivariate environmental change should enable us to significantly advance our predictions of ecosystem function resilience and enable proactive ecosystem management.

20.
Nat Commun ; 10(1): 4455, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31649267

RESUMO

Advances in phenology (the annual timing of species' life-cycles) in response to climate change are generally viewed as bioindicators of climate change, but have not been considered as predictors of range expansions. Here, we show that phenology advances combine with the number of reproductive cycles per year (voltinism) to shape abundance and distribution trends in 130 species of British Lepidoptera, in response to ~0.5 °C spring-temperature warming between 1995 and 2014. Early adult emergence in warm years resulted in increased within- and between-year population growth for species with multiple reproductive cycles per year (n = 39 multivoltine species). By contrast, early emergence had neutral or negative consequences for species with a single annual reproductive cycle (n = 91 univoltine species), depending on habitat specialisation. We conclude that phenology advances facilitate polewards range expansions in species exhibiting plasticity for both phenology and voltinism, but may inhibit expansion by less flexible species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA